mirror of
https://github.com/supleed2/EIE4-FYP.git
synced 2024-12-22 22:25:50 +00:00
Notes for saw -> sine conversion
This commit is contained in:
parent
8dbcd18269
commit
40a969e30d
391
doulos_CORDIC.v
Normal file
391
doulos_CORDIC.v
Normal file
|
@ -0,0 +1,391 @@
|
|||
// CORDIC_par_seq.v Core ALU of a CORDIC rotator,
|
||||
// word-sequential implementation
|
||||
//
|
||||
// Revision information:
|
||||
// 0.0 07-Jan-2004 Jonathan Bromley
|
||||
// Initial coding of word-sequential version
|
||||
// 0.1 08-Jan-2004 Jonathan Bromley
|
||||
// Still using Verilog-1995 (will migrate to SV3.1 later);
|
||||
// added angle output and mode-control input, so that it
|
||||
// can be used to do Cartesian-to-polar conversion as well
|
||||
// as rotation
|
||||
// 1.0 15-Jan-2004 Jonathan Bromley
|
||||
// Migrated everything to signed typedefs (SV3.1)
|
||||
// and signed arithmetic (see file ../common/defs.v)
|
||||
// 1.1 25-Jan-2004 Jonathan Bromley
|
||||
// Improved internal documentation
|
||||
// __________________________________________________________________________
|
||||
|
||||
|
||||
|
||||
// _________________________________________________________ DEPENDENCIES ___
|
||||
//
|
||||
// This module assumes the existence of a typedef T_sdata representing
|
||||
// signed data. This typedef should be a packed logic or integer.
|
||||
// The code here will not work correctly if T_sdata, padded with the
|
||||
// number of additional low-order bits specified by parameter guard_bits,
|
||||
// is wider than 32 bits - in other words, we require that
|
||||
// $bits(T_sdata) + guard_bits <= 32
|
||||
// __________________________________________________________________________
|
||||
|
||||
|
||||
|
||||
//___________________________________________________________ DESCRIPTION ___
|
||||
//
|
||||
// -------
|
||||
// PURPOSE
|
||||
// -------
|
||||
//
|
||||
// This module implements the CORDIC two-dimensional rotator algorithm
|
||||
// originally proposed by Volder (1959). It can be used to calculate
|
||||
// trigonometrical functions sin, cos, arctan and others; it can also
|
||||
// perform polar-to-rectangular and rectangular-to-polar conversion.
|
||||
//
|
||||
//
|
||||
// ----------
|
||||
// PARAMETERS
|
||||
// ----------
|
||||
//
|
||||
// Two parameters, guardBits and stepBits, determine the internal
|
||||
// behaviour of the CORDIC algorithm.
|
||||
//
|
||||
// stepBits is the number of bits in the counter that controls
|
||||
// iteration of the CORDIC algorithm. In the present implementation
|
||||
// there will be exactly (2^stepBits) iterations - for example, 16
|
||||
// iterations if stepBits=4. As a guideline, (2^stepBits) should be
|
||||
// at least as large as the number of bits in the data words.
|
||||
//
|
||||
// guardBits is the number of additional LSBs that is maintained in
|
||||
// the internal arithmetic to improve precision. It should normally
|
||||
// be equal to stepBits, or at least (stepBits-1); otherwise, the
|
||||
// additional precision gained by additional iterations of the CORDIC
|
||||
// algorithm will be lost through rounding errors. On the other hand,
|
||||
// there is little to be gained from making guardBits greater than
|
||||
// (stepBits+1).
|
||||
//
|
||||
// ------------------
|
||||
// INPUTS AND OUTPUTS
|
||||
// ------------------
|
||||
//
|
||||
// There is a single mode control input:
|
||||
// reduceNotRotate.....sets operating mode of the rotator for the
|
||||
// next operation - see OPERATION below for details
|
||||
//
|
||||
// There are three datapath inputs:
|
||||
// angleIn.......2s complement signed value, the desired angle of
|
||||
// rotation
|
||||
// xIn, yIn......Cartesian coordinates of the point being rotated,
|
||||
// as 2s complement signed values
|
||||
//
|
||||
// There are three datapath outputs:
|
||||
// angleOut......2s complement signed value, the resulting angle
|
||||
// after rotation
|
||||
// xOut, yOut....Cartesian coordinates of the rotated point,
|
||||
// as 2s complement signed values
|
||||
//
|
||||
// There are two operation-control or handshake signals:
|
||||
// start.........input, should be asserted for one clock at a time when
|
||||
// valid data are presented to the datapath inputs
|
||||
// ready.........output, held asserted when datapath outputs carry a
|
||||
// valid calculation result
|
||||
//
|
||||
// The remaining inputs (clock, reset) are the usual positive-edge clock
|
||||
// and asynchronous power-up reset.
|
||||
//
|
||||
//
|
||||
// ---------
|
||||
// OPERATION
|
||||
// ---------
|
||||
//
|
||||
// Mode bit "reduceNotRotate" is sampled together with the datapath
|
||||
// inputs whenever "start" is asserted.
|
||||
//
|
||||
// If reduceNotRotate is set (1), angleIn is ignored and the
|
||||
// CORDIC rotator will rotate the x,y vector so that its y component
|
||||
// is zero; thus, its x component will reflect the original vector's
|
||||
// magnitude (scaled by the CORDIC gain) and the angle output will
|
||||
// be equal to the original vector's argument. This mode provides
|
||||
// rectangular-to-polar conversion, and calculation of arctangent.
|
||||
// If the yOut output is significantly different from zero at the end
|
||||
// of the calculation, it indicates that the argument (angle) of the
|
||||
// input vector was too far from zero for the CORDIC algorithm to be
|
||||
// able to reduce it.
|
||||
//
|
||||
// If reduceNotRotate is clear (0), the CORDIC rotator will rotate the
|
||||
// x,y input vector by the angle specified as angleIn (and scale it
|
||||
// by the CORDIC gain); the output angle will then be close to zero.
|
||||
// This mode provides polar-to-rectangular conversion, and calculation
|
||||
// of sine and cosine. If the angleOut output is significantly different
|
||||
// from zero at the end of the calculation, it indicates that the required
|
||||
// rotation angle was too large for the CORDIC algorithm to process.
|
||||
//
|
||||
// On receipt of a "start" input, the CORDIC processor abandons any
|
||||
// calculation that may be in progress, clears the "ready" output to zero,
|
||||
// and starts work on the new input values. When finished, it sets
|
||||
// "ready" to 1. Whenever "ready" is set, the data outputs
|
||||
// xOut, yOut, angleOut are valid. These outputs will remain valid,
|
||||
// and "ready" will remain asserted, until "start" is asserted again at
|
||||
// some future time.
|
||||
//
|
||||
//
|
||||
// ---------------------------
|
||||
// MATHEMATICAL CONSIDERATIONS
|
||||
// ---------------------------
|
||||
//
|
||||
// CORDIC gain
|
||||
// -----------
|
||||
//
|
||||
// It is an inevitable side-effect of the CORDIC algorithm that the
|
||||
// rotated x,y coordinates are magnified by the CORDIC gain. This
|
||||
// gain is the product
|
||||
//
|
||||
// N-1
|
||||
// P (cos(atn(2^(-i))))
|
||||
// i=0
|
||||
//
|
||||
// where N is the number of iterations of the CORDIC loop.
|
||||
// The limit of this product as N tends to infinity is 1.646760258,
|
||||
// and it approaches this limit quite quickly as N rises - for
|
||||
// example, its value for N=4 is 1.642484066. For any
|
||||
// practically useful value of N, it is reasonable to use the limit.
|
||||
//
|
||||
// This hardware implementation makes no attempt to account for the
|
||||
// CORDIC gain, and assumes that this gain factor will be compensated-for
|
||||
// somewhere else in the system.
|
||||
//
|
||||
// Numerical overflow
|
||||
// ------------------
|
||||
//
|
||||
// The output x,y values from the algorithm can be larger in magnitude than
|
||||
// the larger of the two (x,y) inputs. For example, if xIn and yIn are
|
||||
// equal, and the corresponding point is then rotated by pi/4 (45 degrees),
|
||||
// one of the output coordinates will be zero and the other will be sqrt(2)
|
||||
// larger than either input. Additionally, the outputs are scaled by the
|
||||
// CORDIC gain as described above. Consequently, if the largest possible
|
||||
// input coordinate value is M, then the largest possible output is
|
||||
// just under 2.33*M. No account is taken of this effect in the hardware;
|
||||
// input and output values have the same number of bits. It is the user's
|
||||
// responsibility to ensure that input values do not exceed 1/2.33 times
|
||||
// the full-scale value - this sets a limit of +/-14106 for 16-bit data.
|
||||
//
|
||||
// Scaling of data values
|
||||
// ----------------------
|
||||
//
|
||||
// Scaling of the Cartesian coordinates is unimportant, except to note
|
||||
// that the largest magnitude of output results can be as much as
|
||||
// 2.33 times greater than largest the magnitude of the input, as
|
||||
// described in "Numerical overflow" above.
|
||||
//
|
||||
// Scaling of angles is also quite flexible; any scaling
|
||||
// can be accommodated, provided the arctan values also have the
|
||||
// same scaling. Since the CORDIC rotator can rotate its input vector
|
||||
// by more than one quadrant (pi/2) in either direction, it is
|
||||
// reasonable and convenient to choose a scaling in which the
|
||||
// angle is a 2s complement number, with its largest positive value
|
||||
// (01111...1111) representing just less than +pi and its most
|
||||
// negative value (10000..0000) representing exactly -pi.
|
||||
// It is not possible to make effective use of the full range of these
|
||||
// angles, since the CORDIC algorithm is incapable of rotating a vector
|
||||
// by more than 1.743 radians (99.8 degrees) in either direction.
|
||||
// __________________________________________________________________________
|
||||
|
||||
|
||||
|
||||
|
||||
// This is a synthesisable design and doesn't need a `timescale,
|
||||
// but we include one here to avoid any dependence on compilation order.
|
||||
//
|
||||
`timescale 1ns/1ns
|
||||
|
||||
|
||||
//_________________________________________________ module CORDIC_par_seq ___
|
||||
|
||||
module CORDIC_par_seq
|
||||
#( parameter
|
||||
stepBits = 4, // Must be enough to represent 0..angleBits-1
|
||||
guardBits = 4
|
||||
)
|
||||
(
|
||||
input logic clock,
|
||||
input logic reset,
|
||||
|
||||
input logic start,
|
||||
output logic busy,
|
||||
|
||||
input logic reduceNotRotate,
|
||||
|
||||
input T_sdata angleIn,
|
||||
input T_sdata xIn,
|
||||
input T_sdata yIn,
|
||||
|
||||
output T_sdata angleOut,
|
||||
output T_sdata xOut,
|
||||
output T_sdata yOut
|
||||
);
|
||||
|
||||
// Copy of reduceNotRotate taken at start time
|
||||
logic reduceMode;
|
||||
|
||||
localparam sdata_width = $bits(T_sdata);
|
||||
|
||||
typedef logic signed [sdata_width+guardBits-1:0] T_acc;
|
||||
|
||||
// Internal accumulators
|
||||
T_acc x, y, angle;
|
||||
|
||||
// Internal temporaries - output of combinational blocks
|
||||
T_acc arctan, scaleX, scaleY;
|
||||
logic clockwise;
|
||||
|
||||
// Control and sequencing counter
|
||||
//
|
||||
logic [stepBits-1:0] step;
|
||||
|
||||
|
||||
// ____________________________________________ Combinational stuff ___
|
||||
|
||||
// Factor-out common functionality:
|
||||
//
|
||||
// arctan(2^-n) lookup table
|
||||
assign arctan = atn(step);
|
||||
//
|
||||
// right-shifted coordinates
|
||||
assign scaleY = y >>> step;
|
||||
assign scaleX = x >>> step;
|
||||
//
|
||||
// convergence direction
|
||||
assign clockwise = reduceMode ?
|
||||
// Yes? Then we're trying to reduce y to zero:
|
||||
// positive y means we should go clockwise.
|
||||
(y >= 0):
|
||||
// No? Then we're reducing the angle to zero.
|
||||
// Negative angle means we should go clockwise.
|
||||
(angle < 0);
|
||||
|
||||
// Create outputs
|
||||
//
|
||||
assign angleOut = angle >>> guardBits;
|
||||
assign xOut = x >>> guardBits;
|
||||
assign yOut = y >>> guardBits;
|
||||
|
||||
// ___________________________________________________ Clocked logic ___
|
||||
//
|
||||
always @(posedge clock or posedge reset)
|
||||
|
||||
if (reset) begin
|
||||
|
||||
// dumb initialise
|
||||
//
|
||||
angle <= 0;
|
||||
x <= 0;
|
||||
y <= 0;
|
||||
step <= 0;
|
||||
busy <= 0;
|
||||
reduceMode <= 0;
|
||||
|
||||
end else if (start) begin
|
||||
|
||||
// initialise, packing working registers with zero LSBs
|
||||
//
|
||||
x <= xIn <<< guardBits;
|
||||
y <= yIn <<< guardBits;
|
||||
step <= 0;
|
||||
busy <= 1;
|
||||
reduceMode <= reduceNotRotate;
|
||||
if (reduceNotRotate) begin
|
||||
angle <= 0;
|
||||
end else begin
|
||||
angle <= angleIn <<< guardBits;
|
||||
end
|
||||
|
||||
end else if (busy) begin
|
||||
|
||||
// do one iteration
|
||||
if (clockwise) begin
|
||||
|
||||
// Angle is negative (or y is positive),
|
||||
//so we increase the angle and rotate clockwise
|
||||
angle <= angle + arctan;
|
||||
x <= x + scaleY;
|
||||
y <= y - scaleX;
|
||||
|
||||
end else begin
|
||||
|
||||
// Rotate counterclockwise
|
||||
angle <= angle - arctan;
|
||||
x <= x - scaleY;
|
||||
y <= y + scaleX;
|
||||
|
||||
end // if (clockwise)... else...
|
||||
|
||||
if (step == sdata_width-1) begin
|
||||
// All done at the end of this iteration
|
||||
busy <= 0;
|
||||
end // if (step == angleBits)
|
||||
|
||||
step <= step + 1;
|
||||
|
||||
end // if (start) ... else if (active) ...
|
||||
|
||||
|
||||
// __________________________________________________ function atn ___
|
||||
//
|
||||
// function atn provides a table of arctan(2^-n) to 32-bit precision,
|
||||
// and returns the result to the required precision.
|
||||
//
|
||||
function T_acc atn;
|
||||
input [stepBits-1:0] step;
|
||||
|
||||
// internal working register
|
||||
integer a;
|
||||
|
||||
begin
|
||||
|
||||
// Lookup table. Any unused LSBs will be thrown away
|
||||
// by synthesis, we hope!
|
||||
// There is surely no point in having more than 32 iterations?
|
||||
case (step)
|
||||
0: a = 536870912; // atn(1) = pi/4 = 45 degrees = one octant
|
||||
1: a = 316933406;
|
||||
2: a = 167458907;
|
||||
3: a = 85004756;
|
||||
4: a = 42667331;
|
||||
5: a = 21354465;
|
||||
6: a = 10679838;
|
||||
7: a = 5340245;
|
||||
8: a = 2670163;
|
||||
9: a = 1335087;
|
||||
10: a = 667544;
|
||||
11: a = 333772;
|
||||
12: a = 166886;
|
||||
13: a = 83443;
|
||||
14: a = 41722;
|
||||
15: a = 20861;
|
||||
16: a = 10430;
|
||||
17: a = 5215;
|
||||
18: a = 2608;
|
||||
19: a = 1304;
|
||||
20: a = 652;
|
||||
21: a = 326;
|
||||
22: a = 163;
|
||||
23: a = 81;
|
||||
24: a = 41;
|
||||
25: a = 20;
|
||||
26: a = 10;
|
||||
27: a = 5;
|
||||
28: a = 3;
|
||||
29: a = 1;
|
||||
30: a = 1;
|
||||
31: a = 0;
|
||||
default:
|
||||
a = 0;
|
||||
endcase // step
|
||||
|
||||
// Rescale result to match internal angle register (typedef T_acc)
|
||||
atn = a >>> ($bits(integer) - $bits(T_acc));
|
||||
|
||||
end
|
||||
endfunction //atn
|
||||
|
||||
endmodule // CORDIC_par_seq
|
||||
// _______________________________________________________________________
|
|
@ -9,6 +9,12 @@
|
|||
|
||||
### Useful links
|
||||
|
||||
- Sine Approximation for Sawtooth - Sine Conversion
|
||||
- Polynomial Approximation
|
||||
- [Desmos Demonstration (Screenshot)](sine_poly_approx.png)
|
||||
- CORDIC Research
|
||||
- [Area/Energy Efficient CORDIC Accelerator](https://www.researchgate.net/publication/309549123_Area_and_Energy_efficient_CORDIC_Accelerator_for_Embedded_Processor_Datapaths)
|
||||
- [Doulos SNUG Europe 2004 Paper](https://www.doulos.com/knowhow/systemverilog/a-users-experience-with-systemverilog/), [local copy of Verilog](doulos_CORDIC.v)
|
||||
- [API Reference migen, AsyncFIFO](https://m-labs.hk/migen/manual/reference.html#module-migen.genlib.fifo)
|
||||
- [Guide on adding a new core (incomplete)](https://github.com/enjoy-digital/litex/wiki/Add-A-New-Core)
|
||||
- [Using LiteEth on ECP5](https://github.com/enjoy-digital/liteeth/issues/66)
|
||||
|
|
BIN
sine_poly_approx.png
Normal file
BIN
sine_poly_approx.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 227 KiB |
Loading…
Reference in a new issue