Notes for saw -> sine conversion

This commit is contained in:
Aadi Desai 2023-05-21 01:21:41 +01:00
parent 8dbcd18269
commit 40a969e30d
No known key found for this signature in database
3 changed files with 397 additions and 0 deletions

391
doulos_CORDIC.v Normal file
View file

@ -0,0 +1,391 @@
// CORDIC_par_seq.v Core ALU of a CORDIC rotator,
// word-sequential implementation
//
// Revision information:
// 0.0 07-Jan-2004 Jonathan Bromley
// Initial coding of word-sequential version
// 0.1 08-Jan-2004 Jonathan Bromley
// Still using Verilog-1995 (will migrate to SV3.1 later);
// added angle output and mode-control input, so that it
// can be used to do Cartesian-to-polar conversion as well
// as rotation
// 1.0 15-Jan-2004 Jonathan Bromley
// Migrated everything to signed typedefs (SV3.1)
// and signed arithmetic (see file ../common/defs.v)
// 1.1 25-Jan-2004 Jonathan Bromley
// Improved internal documentation
// __________________________________________________________________________
// _________________________________________________________ DEPENDENCIES ___
//
// This module assumes the existence of a typedef T_sdata representing
// signed data. This typedef should be a packed logic or integer.
// The code here will not work correctly if T_sdata, padded with the
// number of additional low-order bits specified by parameter guard_bits,
// is wider than 32 bits - in other words, we require that
// $bits(T_sdata) + guard_bits <= 32
// __________________________________________________________________________
//___________________________________________________________ DESCRIPTION ___
//
// -------
// PURPOSE
// -------
//
// This module implements the CORDIC two-dimensional rotator algorithm
// originally proposed by Volder (1959). It can be used to calculate
// trigonometrical functions sin, cos, arctan and others; it can also
// perform polar-to-rectangular and rectangular-to-polar conversion.
//
//
// ----------
// PARAMETERS
// ----------
//
// Two parameters, guardBits and stepBits, determine the internal
// behaviour of the CORDIC algorithm.
//
// stepBits is the number of bits in the counter that controls
// iteration of the CORDIC algorithm. In the present implementation
// there will be exactly (2^stepBits) iterations - for example, 16
// iterations if stepBits=4. As a guideline, (2^stepBits) should be
// at least as large as the number of bits in the data words.
//
// guardBits is the number of additional LSBs that is maintained in
// the internal arithmetic to improve precision. It should normally
// be equal to stepBits, or at least (stepBits-1); otherwise, the
// additional precision gained by additional iterations of the CORDIC
// algorithm will be lost through rounding errors. On the other hand,
// there is little to be gained from making guardBits greater than
// (stepBits+1).
//
// ------------------
// INPUTS AND OUTPUTS
// ------------------
//
// There is a single mode control input:
// reduceNotRotate.....sets operating mode of the rotator for the
// next operation - see OPERATION below for details
//
// There are three datapath inputs:
// angleIn.......2s complement signed value, the desired angle of
// rotation
// xIn, yIn......Cartesian coordinates of the point being rotated,
// as 2s complement signed values
//
// There are three datapath outputs:
// angleOut......2s complement signed value, the resulting angle
// after rotation
// xOut, yOut....Cartesian coordinates of the rotated point,
// as 2s complement signed values
//
// There are two operation-control or handshake signals:
// start.........input, should be asserted for one clock at a time when
// valid data are presented to the datapath inputs
// ready.........output, held asserted when datapath outputs carry a
// valid calculation result
//
// The remaining inputs (clock, reset) are the usual positive-edge clock
// and asynchronous power-up reset.
//
//
// ---------
// OPERATION
// ---------
//
// Mode bit "reduceNotRotate" is sampled together with the datapath
// inputs whenever "start" is asserted.
//
// If reduceNotRotate is set (1), angleIn is ignored and the
// CORDIC rotator will rotate the x,y vector so that its y component
// is zero; thus, its x component will reflect the original vector's
// magnitude (scaled by the CORDIC gain) and the angle output will
// be equal to the original vector's argument. This mode provides
// rectangular-to-polar conversion, and calculation of arctangent.
// If the yOut output is significantly different from zero at the end
// of the calculation, it indicates that the argument (angle) of the
// input vector was too far from zero for the CORDIC algorithm to be
// able to reduce it.
//
// If reduceNotRotate is clear (0), the CORDIC rotator will rotate the
// x,y input vector by the angle specified as angleIn (and scale it
// by the CORDIC gain); the output angle will then be close to zero.
// This mode provides polar-to-rectangular conversion, and calculation
// of sine and cosine. If the angleOut output is significantly different
// from zero at the end of the calculation, it indicates that the required
// rotation angle was too large for the CORDIC algorithm to process.
//
// On receipt of a "start" input, the CORDIC processor abandons any
// calculation that may be in progress, clears the "ready" output to zero,
// and starts work on the new input values. When finished, it sets
// "ready" to 1. Whenever "ready" is set, the data outputs
// xOut, yOut, angleOut are valid. These outputs will remain valid,
// and "ready" will remain asserted, until "start" is asserted again at
// some future time.
//
//
// ---------------------------
// MATHEMATICAL CONSIDERATIONS
// ---------------------------
//
// CORDIC gain
// -----------
//
// It is an inevitable side-effect of the CORDIC algorithm that the
// rotated x,y coordinates are magnified by the CORDIC gain. This
// gain is the product
//
// N-1
// P (cos(atn(2^(-i))))
// i=0
//
// where N is the number of iterations of the CORDIC loop.
// The limit of this product as N tends to infinity is 1.646760258,
// and it approaches this limit quite quickly as N rises - for
// example, its value for N=4 is 1.642484066. For any
// practically useful value of N, it is reasonable to use the limit.
//
// This hardware implementation makes no attempt to account for the
// CORDIC gain, and assumes that this gain factor will be compensated-for
// somewhere else in the system.
//
// Numerical overflow
// ------------------
//
// The output x,y values from the algorithm can be larger in magnitude than
// the larger of the two (x,y) inputs. For example, if xIn and yIn are
// equal, and the corresponding point is then rotated by pi/4 (45 degrees),
// one of the output coordinates will be zero and the other will be sqrt(2)
// larger than either input. Additionally, the outputs are scaled by the
// CORDIC gain as described above. Consequently, if the largest possible
// input coordinate value is M, then the largest possible output is
// just under 2.33*M. No account is taken of this effect in the hardware;
// input and output values have the same number of bits. It is the user's
// responsibility to ensure that input values do not exceed 1/2.33 times
// the full-scale value - this sets a limit of +/-14106 for 16-bit data.
//
// Scaling of data values
// ----------------------
//
// Scaling of the Cartesian coordinates is unimportant, except to note
// that the largest magnitude of output results can be as much as
// 2.33 times greater than largest the magnitude of the input, as
// described in "Numerical overflow" above.
//
// Scaling of angles is also quite flexible; any scaling
// can be accommodated, provided the arctan values also have the
// same scaling. Since the CORDIC rotator can rotate its input vector
// by more than one quadrant (pi/2) in either direction, it is
// reasonable and convenient to choose a scaling in which the
// angle is a 2s complement number, with its largest positive value
// (01111...1111) representing just less than +pi and its most
// negative value (10000..0000) representing exactly -pi.
// It is not possible to make effective use of the full range of these
// angles, since the CORDIC algorithm is incapable of rotating a vector
// by more than 1.743 radians (99.8 degrees) in either direction.
// __________________________________________________________________________
// This is a synthesisable design and doesn't need a `timescale,
// but we include one here to avoid any dependence on compilation order.
//
`timescale 1ns/1ns
//_________________________________________________ module CORDIC_par_seq ___
module CORDIC_par_seq
#( parameter
stepBits = 4, // Must be enough to represent 0..angleBits-1
guardBits = 4
)
(
input logic clock,
input logic reset,
input logic start,
output logic busy,
input logic reduceNotRotate,
input T_sdata angleIn,
input T_sdata xIn,
input T_sdata yIn,
output T_sdata angleOut,
output T_sdata xOut,
output T_sdata yOut
);
// Copy of reduceNotRotate taken at start time
logic reduceMode;
localparam sdata_width = $bits(T_sdata);
typedef logic signed [sdata_width+guardBits-1:0] T_acc;
// Internal accumulators
T_acc x, y, angle;
// Internal temporaries - output of combinational blocks
T_acc arctan, scaleX, scaleY;
logic clockwise;
// Control and sequencing counter
//
logic [stepBits-1:0] step;
// ____________________________________________ Combinational stuff ___
// Factor-out common functionality:
//
// arctan(2^-n) lookup table
assign arctan = atn(step);
//
// right-shifted coordinates
assign scaleY = y >>> step;
assign scaleX = x >>> step;
//
// convergence direction
assign clockwise = reduceMode ?
// Yes? Then we're trying to reduce y to zero:
// positive y means we should go clockwise.
(y >= 0):
// No? Then we're reducing the angle to zero.
// Negative angle means we should go clockwise.
(angle < 0);
// Create outputs
//
assign angleOut = angle >>> guardBits;
assign xOut = x >>> guardBits;
assign yOut = y >>> guardBits;
// ___________________________________________________ Clocked logic ___
//
always @(posedge clock or posedge reset)
if (reset) begin
// dumb initialise
//
angle <= 0;
x <= 0;
y <= 0;
step <= 0;
busy <= 0;
reduceMode <= 0;
end else if (start) begin
// initialise, packing working registers with zero LSBs
//
x <= xIn <<< guardBits;
y <= yIn <<< guardBits;
step <= 0;
busy <= 1;
reduceMode <= reduceNotRotate;
if (reduceNotRotate) begin
angle <= 0;
end else begin
angle <= angleIn <<< guardBits;
end
end else if (busy) begin
// do one iteration
if (clockwise) begin
// Angle is negative (or y is positive),
//so we increase the angle and rotate clockwise
angle <= angle + arctan;
x <= x + scaleY;
y <= y - scaleX;
end else begin
// Rotate counterclockwise
angle <= angle - arctan;
x <= x - scaleY;
y <= y + scaleX;
end // if (clockwise)... else...
if (step == sdata_width-1) begin
// All done at the end of this iteration
busy <= 0;
end // if (step == angleBits)
step <= step + 1;
end // if (start) ... else if (active) ...
// __________________________________________________ function atn ___
//
// function atn provides a table of arctan(2^-n) to 32-bit precision,
// and returns the result to the required precision.
//
function T_acc atn;
input [stepBits-1:0] step;
// internal working register
integer a;
begin
// Lookup table. Any unused LSBs will be thrown away
// by synthesis, we hope!
// There is surely no point in having more than 32 iterations?
case (step)
0: a = 536870912; // atn(1) = pi/4 = 45 degrees = one octant
1: a = 316933406;
2: a = 167458907;
3: a = 85004756;
4: a = 42667331;
5: a = 21354465;
6: a = 10679838;
7: a = 5340245;
8: a = 2670163;
9: a = 1335087;
10: a = 667544;
11: a = 333772;
12: a = 166886;
13: a = 83443;
14: a = 41722;
15: a = 20861;
16: a = 10430;
17: a = 5215;
18: a = 2608;
19: a = 1304;
20: a = 652;
21: a = 326;
22: a = 163;
23: a = 81;
24: a = 41;
25: a = 20;
26: a = 10;
27: a = 5;
28: a = 3;
29: a = 1;
30: a = 1;
31: a = 0;
default:
a = 0;
endcase // step
// Rescale result to match internal angle register (typedef T_acc)
atn = a >>> ($bits(integer) - $bits(T_acc));
end
endfunction //atn
endmodule // CORDIC_par_seq
// _______________________________________________________________________

View file

@ -9,6 +9,12 @@
### Useful links
- Sine Approximation for Sawtooth - Sine Conversion
- Polynomial Approximation
- [Desmos Demonstration (Screenshot)](sine_poly_approx.png)
- CORDIC Research
- [Area/Energy Efficient CORDIC Accelerator](https://www.researchgate.net/publication/309549123_Area_and_Energy_efficient_CORDIC_Accelerator_for_Embedded_Processor_Datapaths)
- [Doulos SNUG Europe 2004 Paper](https://www.doulos.com/knowhow/systemverilog/a-users-experience-with-systemverilog/), [local copy of Verilog](doulos_CORDIC.v)
- [API Reference migen, AsyncFIFO](https://m-labs.hk/migen/manual/reference.html#module-migen.genlib.fifo)
- [Guide on adding a new core (incomplete)](https://github.com/enjoy-digital/litex/wiki/Add-A-New-Core)
- [Using LiteEth on ECP5](https://github.com/enjoy-digital/liteeth/issues/66)

BIN
sine_poly_approx.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 227 KiB