
Hardware Verification –
Introduction to Main

Coursework

ELEC70056
Autumn term 2022

Version 2 – October 27th 2022

Pete Harrod

Functional safety – detecting faults
• Functional safety is required for many automotive

systems
• Detecting and managing faults is required
• Example: ABS brakes

• If a fault is detected, then a typical strategy is to do a h/w
reboot

• If the fault is transient, then system will resume normally
• If the fault is permanent, then the function can be

disabled

• The coursework will involve
• adding mechanisms to detect faults to the RTL design that

is provided
• ensuring the thorough verification of these features, in

addition to the verification of the functionality of the
blocks

Passenger safety
Air bagsDriver assist

Lane departure

Engine management
Power train

Electric / hybrid
energy system

Types of Faults

• Random hardware failures
• Permanent faults

• Manufacturing faults (stuck-at, bridging)
• Design bug
• Critical path due to slow process
• Latch-up due to alpha-particle strike

• Transient faults
• Bit flip in memory due to alpha-particle

• Common-mode failures
• Clock
• Reset
• EMC

The Bathtub Curve

1 – 20 weeks

Normal Lifetime

Fa
ilu

re
 ra

te

Infant
mortality

Wearout

3 – 10 years time

• Infant mortality: Increasing manufacturing defects
• Normal lifetime: Increasing transient errors
• Wearout: Acceleration of aging phenomena

Coursework objectives

• To add error-detection features to and fully verify AHB GPIO and VGA peripherals,
integrated into an example Cortex-M0 SOC

• The basic RTL of the GPIO and VGA peripherals is provided
• You will need to:

• Modify the GPIO RTL to add parity generation/checking
• Instantiate a redundant VGA peripheral block plus add RTL for a comparator
• Create unit-level constrained random testbenches written in SystemVerilog for the GPIO and VGA

peripherals
• Write appropriate SystemVerilog assertions (SVA)

• To cover designer intent
• To describe behaviour of the interface(s)

• Attempt to prove some properties using Formal verification
• Develop checkers for the GPIO and VGA peripheral behaviour
• Write functional coverage and demonstrate coverage has been achieved
• Demonstrate integration and verification at the Cortex-M0 SOC level

Example SOC

Arm Cortex-M0
Processor

BRAM

System on Chip

Arm AMBA 3 AHB-Lite System Bus

32-bit Address Bus

32-bit Data Bus

Control Signals

VGA
Peripheral

Monitor

UART
Peripheral

To Host

Timer
Peripheral

GPIO
Peripheral

LED

7-Segment
Peripheral

7-Segment
Display

GPIO – the basics

AHB
Interface

Data [31:0]

Addr [31:0]

Control [31:0]

addr Address
Decoder

Data [31:0]

Output Data [15:0]

Input Data [15:0]

Direction [15:0]

External
Devices

GPIO Design

• GPIO – General Purpose Input Output
• Direction can be controlled
• Modifications required:

• Add pin to configure odd or even parity
• Calculate parity on write data word and output parity bit along with the data;

check parity on read data and signal if parity error

GPIO Design modifications – more details

• Add parity generation on GPIO output and parity checking on GPIO input
• 1 parity bit per 16-bit data word
• Pin configurable odd/even parity

GPIO – verification at the unit-level

AHB-Lite interface

GPIOOUT

GPIOIN

Data [31:0]

Addr [31:0]

Control [31:0]

AHB
BFM

Monitor
BFMGPIO

© 2017 Arm Limited 11

AHB VGA Peripheral Hardware Architecture

The VGA peripheral can display texts and images on a monitor through a VGA cable.

The VGA peripheral consists of 5 components: , an AHB interface, a VGA interface, an
image buffer for displaying images, a text console module for displaying texts, and a
multiplexer.

VGA
interface

Image
buffer

Text
console

Colour

HS

VS

M
u

x

Address x

Address y

Image colour

Text colour Console region or
image region

8

8

8 8

Memory address

Memory data

Write enable

Text data (Ascii)

Write enable

AHB
interface

Data

Addr

Control

VGA Peripheral – verification at the unit-level

AHB-Lite interface

HSYNC
Data [31:0]

Addr [31:0]

Control [31:0]

AHB
BFM

Checker
VGA Peripheral

VSYNC

RGB[7:0]

VGA Peripheral – Dual Lock-Step Configuration

• VGA Peripheral RTL is provided
• Create a Dual Lock-Step (DLS) configuration for the VGA Peripheral, so

as to be able to detect faults
• Modifications required:

• Instantiate a second redundant copy of the VGA Peripheral
• Write the RTL for a comparator block, that compares the outputs from the

Primary block with the Redundant block and signals an error if there is a
mismatch

• Provide a way of injecting a fault into the Primary block, Redundant block or
comparator, to test the operation of the DLS

Dual Lock-Step Configuration

Primary VGA
Peripheral

Redundant VGA
Peripheral

AHB inputs
(address,
data,
control,
clock,
reset)

AHB-Lite
Interface

AHB outputs
(data, control)

Comparator
VGA outputs

VGA outputs

AHB outputs

DLS_ERROR

Verification Requirements

• Write a basic Verification Plan
• Create unit-level constrained random testbench(es) for the two blocks

(GPIO and VGA Peripheral)
• Write SVAs
• Use SV constructs included in lectures in your testbench code

• Interfaces
• Clocking blocks
• Class – e.g. for randomised variables

• Include a way of injecting faults into data and parity bit, to cause parity
error

• Include a way of injecting faults in dual lock-step VGA Peripheral
configuration, to cause comparator errors

More Verification Requirements

• Attempt to prove some properties with JasperGold formal tool
• Provide some way of checking the behaviour of the GPIO and VGA

Peripherals (limited checking for the VGA)
• Write functional coverage points and demonstrate coverage
• Measure code coverage
• Write directed tests in Assembler for integration testing

Final objective

• Verify GPIO and VGA Peripheral operating in example Cortex-M0 SOC
• Write assembler code to provide directed testing of both peripherals

System
Control ROM Boot

ROM RAM ROM
Table

AHB
Peripheral

APB
Peripheral

UART

Timers

Watchdog

AP
B

Bu
s

DMA

Mux

Low Latency
AHB IOP

ARM AMBA 3 AHB-Lite System Bus AHB to APB
Bus Bridge

Clock
Generator

Power
Management Unit

RAM UART VGA GPIO Timer 7-segment
Display

Arm Cortex-M0
Microprocessor

Arm AMBA 3 AHB-Lite System Bus

An example of an Arm-based SoC

System
Control ROM Boot

ROM RAM ROM
Table

APB
Peripheral

UART

Timers

Watchdog

AP
B

Bu
s

DMA

Mux

Low Latency
AHB IOP

ARM AMBA 3 AHB-Lite System Bus AHB to APB
Bus Bridge

Clock
Generator

Power
Management Unit

JTAG/Serial wire

RAM UART VGA GPIO Timer VGA Peripheral

Arm Cortex-M0
Microprocessor

Arm AMBA 3 AHB-Lite System Bus

An example of an Arm-based SoC

Monitor testbench

VGA Peripheral

Comparator DLS_ERROR

Checker

Cortex-M0 and SOC code

• RTL for GPIO and VGA Peripheral blocks will be provided
• Example Assembler code for driving existing blocks will also be given
• You will need to download the Cortex-M0 DesignStart model from

Arm (instructions will be provided)
• DesignStart model is a netlist model
• You will need to agree to the license terms

• Suggest trying to simulate Cortex-M0 SOC with existing blocks before
making modifications to the GPIO and adding the redundant VGA
Peripheral block

Deliverables
• Brief ReadMe, with any information that you think will be useful to me when assessing your work, e.g.

• Location of files (and what they are for if not obvious)
• Any important points about your verification strategy and any difficulties that you encountered
• Brief summary of your verification results

• Verification Plan (a list of what requires testing and how it will be tested)
• Modified RTL code for the GPIO and the dual lock-step configuration of the VGA Peripheral
• SystemVerilog files of your testbench(es)
• Your SystemVerilog assertions and evidence of trying to prove some of these with formal verification (a screenshot from

Jaspergold or a log file)
• Checkers for both the GPIO and VGA (see the ‘AHB Peripherals Specification’ for what should be checked for the VGA)
• Evidence of running the unit-level testbench simulation (log file or screenshot)
• Assembler (or C) code for your top-level integration testing
• If possible, a log file or screenshot showing the result of running your top-level test
• Functional coverage points (you can include these with your testbench code)
• Code coverage and functional coverage reports (in text or HTML format)

Some hints for verification of the GPIO

• You could choose to model the GPIO in SystemVerilog as a way of checking
the functionality of the Verilog RTL

• You might choose to do end-to-end checking for the GPIO
• Write a data stream, then read the data back through the GPIO and check you

receive what was sent

• The “monitor” BFM can be used for unit-level and top-level verification
• Get your modified design working at unit-level before integrating it into the

SOC
• Use properties written as SVAs to help with bring-up (e.g. for parity logic)

• Can try and prove these with Formal tool rather than simulation

