Hardware Verification —
Introduction to Main
Coursework

ELEC70056
Autumn term 2022
Version 2 — October 27t 2022

Pete Harrod

Functional safety — detecting faults

Functional safety is required for many automotive

systems
Detecting and managing faults is required
. . P nger safety
Example: ABS brakes Driverassist " Airbags
» If a fault is detected, then a typical strategy is to do a h/w _ _
reboot Engine management Bl

energy system

Power train

e If the fault is transient, then system will resume normally

e |If the fault is permanent, then the function can be
disabled

The coursework will involve

* adding mechanisms to detect faults to the RTL design that ———=
is provided

e ensuring the thorough verification of these features, in
addition to the verification of the functionality of the
blocks

Types of Faults

e Random hardware failures

* Permanent faults
* Manufacturing faults (stuck-at, bridging)
* Design bug
 Critical path due to slow process
e Latch-up due to alpha-particle strike

* Transient faults
 Bit flip in memory due to alpha-particle

e Common-mode failures
* Clock

* Reset
s EMC

The Bathtub Curve
A

Infant
mortality

Failure rate

Normal Lifetime

i

Wearout

1 - 20 weeks

* Infant mortality:
* Normal lifetime:
* Wearout:

77

3 -10years

Coursework objectives

* To add error-detection features to and fully verify AHB GPIO and VGA peripherals,
integrated into an example Cortex-MO SOC

* The basic RTL of the GPIO and VGA peripherals is provided

* You will need to:
* Modify the GPIO RTL to add parity generation/checking
* |Instantiate a redundant VGA peripheral block plus add RTL for a comparator

. Creatﬁ un}t-level constrained random testbenches written in SystemVerilog for the GPIO and VGA
peripherals

* Write appropriate SystemVerilog assertions (SVA)
* To cover designer intent
* To describe behaviour of the interface(s)

* Attempt to prove some properties using Formal verification

* Develop checkers for the GPIO and VGA peripheral behaviour

* Write functional coverage and demonstrate coverage has been achieved
* Demonstrate integration and verification at the Cortex-MO0 SOC level

Example SOC

System on Chip

Arm Cortex-MO A MB ﬂ@

Processor Interconnect Standards from ARM

‘ Arm AMBA 3 AHB-Lite System Bus

32-bit Address Bus

N,

,I

\
1
1
1
1
4
,I
N
AY
)
1
1
U

3

o

N e
o e e i

Pl T ————————_

GPIO — the basics

Data [31:0]

<

)

N\

Addr [31:0]

)

<

Control [31:0]

)

AHB
Interface

Address
E‘> Decoder

< Data [31:0]

—

Output Data [15:0]

>

(———

Input Data [15:0]

K———

——A

Direction [15:0]

External
Devices

GPIO Design

* GPIO — General Purpose Input Output
e Direction can be controlled

* Modifications required:
e Add pin to configure odd or even parity

 Calculate parity on write data word and output parity bit along with the data;
check parity on read data and signal if parity error

GPIO Design modifications — more details

* Add parity generation on GPIO output and parity checking on GPIO input
* 1 parity bit per 16-bit data word

* Pin configurable odd/even parity

GPIO — verification at the unit-level

GPIOOUT

Data [31:0]

Addr [31:0]

GPIOIN

Control [31:0] —

AHB-Lite interface

AHB VGA Peripheral Hardware Architecture

The VGA peripheral can display texts and images on a monitor through a VGA cable.

The VGA peripheral consists of 5 components: , an AHB interface, a VGA interface, an

image buffer for displaying images, a text console module for displaying texts, and a
multiplexer.

Z Address x
JVIemory address < i S
~ Address y
Memory data > Image < 7 HS
buffer >
Write enable > Jmag.nu;o.ln.u_gz_’
<EHE> AHB = VGA . Colopr
. c .
interface 3 interface
S
<m> Text data (Ascii) —
> Text ——— | Us
Write enable
nsol
> console Text colour Console region or >
image region

11 © 2017 Arm Limited q r m

VGA Peripheral — verification at the unit-level

Data [31:0]
VSYNC

Addr [31:0]
RGB[7:0]

Control [31:0]

AHB-Lite interface

VGA Peripheral — Dual Lock-Step Configuration

* VGA Peripheral RTL is provided

* Create a Dual Lock-Step (DLS) configuration for the VGA Peripheral, so
as to be able to detect faults

* Modifications required:
* Instantiate a second redundant copy of the VGA Peripheral

* Write the RTL for a comparator block, that compares the outputs from the
Primary block with the Redundant block and signals an error if there is a
mismatch

* Provide a way of injecting a fault into the Primary block, Redundant block or
comparator, to test the operation of the DLS

Dual Lock-Step Configuration

AHB outputs
(data, control)

T

AHB inputs
(address,
data,
control,
clock,
reset)

DLS_ERROR

AHB outputs

VGA outputs

Verification Requirements

e Write a basic Verification Plan

* Create unit-level constrained random testbench(es) for the two blocks
(GPIO and VGA Peripheral)

 Write SVAs

e Use SV constructs included in lectures in your testbench code
* Interfaces
* Clocking blocks
* Class — e.g. for randomised variables

* Include a way of injecting faults into data and parity bit, to cause parity
error

* Include a way of injecting faults in dual lock-step VGA Peripheral
configuration, to cause comparator errors

More Verification Requirements

* Attempt to prove some properties with JasperGold formal tool

* Provide some way of checking the behaviour of the GPIO and VGA
Peripherals (limited checking for the VGA)

* Write functional coverage points and demonstrate coverage

* Measure code coverage
* Write directed tests in Assembler for integration testing

Final objective

* Verify GPIO and VGA Peripheral operating in example Cortex-MO0 SOC

* Write assembler code to provide directed testing of both peripherals

Clock Power
Generator Management Unit
JTAG/Serial wire iaiehdog
< >
DMA
4+—> -
Low Latency Ar‘m Cortex-MO
<—>" AHB |OP Microprocessor 2 Timers
Mux [a)
o
o
APB <
Arm AMBA 3 AHB-Lite System Bus AHB to UART
] Bus Bridge
. . APB
RAM UART VGA GPIO Timer VGA Peripheral]
Peripheral
An example of an Arm-based SoC T VGA Peripheral

- Comparator > DLS _ERROR

Cortex-MO and SOC code

* RTL for GPIO and VGA Peripheral blocks will be provided
* Example Assembler code for driving existing blocks will also be given

* You will need to download the Cortex-MO DesignStart model from
Arm (instructions will be provided)
* DesignStart model is a netlist model
* You will need to agree to the license terms

e Suggest trying to simulate Cortex-MO SOC with existing blocks before
making modifications to the GPIO and adding the redundant VGA
Peripheral block

Deliverables

Brief ReadMe, with any information that you think will be useful to me when assessing your work, e.g.
* Location of files (and what they are for if not obvious)
* Any important points about your verification strategy and any difficulties that you encountered
* Brief summary of your verification results

Verification Plan (a list of what requires testing and how it will be tested)
Modified RTL code for the GPIO and the dual lock-step configuration of the VGA Peripheral
SystemVerilog files of your testbench(es)

Your SystemVerilog assertions and evidence of trying to prove some of these with formal verification (a screenshot from
Jaspergold or a log file)

Checkers for both the GPIO and VGA (see the ‘AHB Peripherals Specification’ for what should be checked for the VGA)
Evidence of running the unit-level testbench simulation (log file or screenshot)

Assembler (or C) code for your top-level integration testing

If possible, a log file or screenshot showing the result of running your top-level test

Functional coverage points (you can include these with your testbench code)

Code coverage and functional coverage reports (in text or HTML format)

Some hints for verification of the GPIO

* You could choose to model the GPIO in SystemVerilog as a way of checking
the functionality of the Verilog RTL

* You might choose to do end-to-end checking for the GPIO

* Write a data stream, then read the data back through the GPIO and check you
receive what was sent

* The “monitor” BFM can be used for unit-level and top-level verification

* Get your modified design working at unit-level before integrating it into the
SOC

* Use properties written as SVAs to help with bring-up (e.g. for parity logic)
e Can try and prove these with Formal tool rather than simulation

