
Hardware Verification – Main Coursework

Specification for AHB Peripherals – Version 1.0

Revision History

Revision Issue Date
1.0 27th October 2022 Initial version

Introduction

This is the specification for the two AHB peripherals, the verification of which will be the main
objective of the coursework that you will submit for assessment.

See the “Hardware Verification - Introduction to Main Coursework” and “AHB Peripherals”
presentations for further details.

The two peripherals are:

 GPIO (General Purpose Input/Output) Peripheral
 VGA Peripheral

The baseline RTL for these two peripherals will be provided; some changes will be needed to the
GPIO in order to meet the specification and you will need to add additional RTL to implement a dual
lock-step configuration for the VGA Peripheral.

AHB-Lite Interface (this is common to both peripherals)

The GPIO and VGA Peripherals are connected to the Cortex-M0 CPU using an AHB-Lite bus. The
peripherals must adhere to the AHB-Lite bus protocol.

You can download the AHB-Lite Specification from this link:
https://developer.arm.com/docs/ihi0033/a

(You can ignore the other AHB-Lite protocol signals that are not listed here. They are either not
needed by the GPIO or VGA Peripherals or can be tied off at the integration level.)

Signal Description

AHBLITE INTERFACE

Input signal name Purpose
HSEL Slave select signal
HCLK AHB-Lite clock
HRESETn AHB-Lite reset (active low)
HREADY AHB-Lite Transfer Complete
HADDR [31:0] AHB-Lite Address
HTRANS [1:0] AHB-Lite Transfer Type
HWRITE AHB-Lite Transfer Direction
HSIZE [2:0] AHB-Lite Transfer Size
HWDATA [31:0] AHB-Lite Write Data Bus

Output signal name Purpose
HREADYOUT Slave Transfer Complete
HRDATA [31:0] AHB-Lite Read Data Bus

Output data to the peripherals will be transferred on the HWDATA bus and data from the
peripherals will be transferred on the HRDATA bus. You will see that in some cases only the lower 8
bits or the lower 16 bits of the HWDTA and HRDATA buses are used.

NOTE: This interface is already implemented in the baseline RTL provided for each of the
peripherals. However, you will need to ensure that the AHB-Lite bus protocol is conformed to in
your unit-level verification. (Hint: Your testbench will need to drive the AHB-Lite bus according to the
AHB-Lite specification; plus you could write some properties to check for correct AHB-Lite
behaviour).

1. GPIO (General Purpose Input/Output) Specification

The GPIO block is a simple peripheral that enables data to be output to an external device and data
to be read from an external device.

The GPIO shall implement the following registers:

• Data registers

• Input data: the data read from external devices

• Output data: the data sent to external devices

• Direction register

• Controls whether it is a read or write operation

Register Address Size
GPIO Data 0x5300_0000 16 bits
GPIO Direction 0x5300_0004 16 bits

The direction of input/output is controlled by the direction register (gpio_dir [15:0]). In the baseline
RTL provided, both the input and output buses are 16 bits wide. Although the direction register is
also 16 bits wide, in this implementation only two values are used. gpio_dir[15:0] == 16’h0000 for an
input operation, gpio_dir[15:0] == 16’h0001 for an output operation.

The basic operation is as follows:

Write the required direction to the direction register using an AHB write cycle with the AHB address
set to 0x5300_0004

If the direction is output, then the value of GPIOUT[15:0] will be set on an AHB write cycle with the
AHB address set to 0x5300_0000

An internal register (gpio_datain[15:0]) shall capture GPIOIN[15:0] on every clock edge when the
direction is set to input and the value of GPIOOUT[15:0] when the direction is set to output and this
internal register shall drive HRDATA[15:0].

Note: Parity generation and checking are not implemented in the RTL provided and need to be
added

Parity Generation

When an entry is written into the GPIO output register (gpio_dataout), an additional parity bit shall
be computed and stored alongside the 16-bit data entry. This parity bit should also be connected to
an output pin, so you will need to increase the width of GPIOOUT to 17 bits.

The parity shall be pin-configurable as odd or even parity using the PARITYSEL input pin.

Parity Checking

The parity of the GPIO input (GPIOIN) should be checked when the data is registered on the input of
the GPIO – i.e. when gpio_datain is updated from the GPIOIN input bus. Note that the width of
GPIOIN will need to be increased to 17 bits to accommodate the extra parity bit. If there is a parity
error, the PARITYERR signal should be asserted. For simplicity, the transfer should still proceed even
if a parity error has occurred. (In a real system you could for instance connect the PARITYERR signal
to the Cortex-M0 interrupt input to signal the error but this is beyond the scope of this assignment).

Fault injection

In order to test the parity generation and checking logic, you should implement a way of injecting a
fault into either the data or the parity bit itself so that a PARITYERR is generated. It is up to you how
you implement this (it could be via an extra input pin).

GPIO-specific Signal Description

GPIO Input/Output INTERFACE

Input signal name Purpose
GPIOIN[15:0] GPIO input port

Output signal name Purpose
GPIOOUT[15:0] GPIO output port

PARITY ERROR INTERFACE

Output signal name Purpose
PARITYERR Set to a ‘1’ every time a parity error is detected

CONFIGURATION SIGNAL

Input signal name Purpose

PARITYSEL Parity selection input pin
Odd parity if PARITYSEL=1
Even parity if PARITYSEL =0

2. VGA Peripheral Specification

The VGA peripheral is designed to display text and images on a monitor according to the VGA
specification. Text and images to be displayed are written to the VGA peripheral using AHB-Lite write
operations. See ‘AHB Peripherals Presentation’ for a more detailed description of the operation of
the VGA peripheral. For the purposes of this coursework, you can consider the VGA peripheral as a
design that conforms to the VGA specification.

NOTE: Your verification should focus on the operation of the text display function, not on the
image display.

The VGA peripheral shall implement the following register map:

• Console text: 1 word (4 bytes) register to contain the character to be displayed

• Image buffer: The remainder of the 16Mbyte memory map (16M-4 bytes) is used to store
pixels

Register Base Address End Address Size
Console text 0x5000_0000 0x5000_0000 4 bytes
Image Buffer 0x5000_0004 0x50FF_FFFF (16M-4) bytes

VGA-specific Signal Description

VGA output signal names Purpose
RGB[7:0] Pixel colour (3-bit red, 3-bit green, 2-bit blue)
HSYNC Horizontal synchronisation signal; one pulse

indicates the start of the next line
VSYNC Vertical synchronisation signal; one pulse

indicates the start of the next frame

The VGA specification that the VGA peripheral should conform to is for a 640x480 display at 60Hz,
for which the industry standard timing is as follows:

Screen refresh rate: 60Hz

Vertical refresh: 31.46875kHz

Pixel frequency: 25.175MHz

The horizontal (line) timing is as follows:

Scanline part Number of Pixels Time (us)
Visible area 640 25.422045680238
Front porch 16 0.63555114200596
Sync pulse 96 3.813306852035
Back porch 48 1.9066534260179
Whole line 800 31.777557100298

The vertical (frame) timing is as follows:

Frame part Number of Lines Time (ms)
Visible area 480 15.253227408143
Front porch 10 0.31777557100298
Sync pulse 2 0.063555114200596
Back porch 33 1.0486593843098
Whole frame 525 16.683217477656

As you will not be driving an actual monitor, for the purposes of simulation you could use a clock
frequency of 25MHz to simplify things.

For the purposes of this coursework, you should at least verify that text characters are displayed in
the correct part of the display, in other words in the “Visible area” as defined in the tables above and
as show in the diagrams in the ‘AHB Peripherals’ Presentation slides.

Text display operation

The VGA peripheral contains logic that drives the RGB[7:0], HSYNC and VSYNC signals at the correct
times in order to display the characters at the correct place on the display. Each character is
converted into a matrix of pixels and each row of that matrix is driven line by line to make up the
complete character. If you look at the file font_rom.v, you will see how the matrix of pixels is derived
for each ASCII character. For example, the ASCII code for the digit 1 is (in hex) 0x31 and the pixel
matrix for this is as follows (there are blank lines above and below the character):

//code x31

 11'h310: data = 8'b00000000; //

 11'h311: data = 8'b00000000; //

 11'h312: data = 8'b00011000; //

 11'h313: data = 8'b00111000; //

 11'h314: data = 8'b01111000; // **

 11'h315: data = 8'b00011000; // ***

 11'h316: data = 8'b00011000; // ****

 11'h317: data = 8'b00011000; // **

 11'h318: data = 8'b00011000; // **

 11'h319: data = 8'b00011000; // **

 11'h31a: data = 8'b00011000; // **

 11'h31b: data = 8'b01111110; // **

 11'h31c: data = 8'b00000000; // **

 11'h31d: data = 8'b00000000; // ******

 11'h31e: data = 8'b00000000; //

 11'h31f: data = 8'b00000000; //

And so if you write the character ‘1’ to the VGA peripheral via the AHB bus, this matrix of pixels
should appear in the visible display area of the VGA monitor. See if you can develop a checker that
verifies this. You can do this for just one or two characters, I don’t expect you to verify the complete
ASCII character set can be displayed! By using the ‘Number of Pixels’ and ‘Number of Lines’
information above and using the HSYNC and VSYNC signals as reference points, by counting clocks
you should be able to work out when the characters will be displayed and then for a few lines record
which pixels are being driven (RGB[7:0] is non-zero). You don’t need to verify the colour information.

(For simplicity this VGA Peripheral is hard-wired to display all characters in the text display in green.)

Dual Lock-Step Configuration of VGA Peripheral

The RTL provided for the VGA Peripheral can be used unmodified for this coursework (unless you
find a bug in it!) However, you are required to implement a Dual Lock-Step configuration of the VGA
Peripheral so as to be able to detect any hardware faults that may occur. To do this, you need to
instantiate a second identical copy of the VGA Peripheral and connect it to the same input signals as
the first copy. For this specification we will refer to the original VGA Peripheral as the ‘Primary’ and
the second redundant copy as the ‘Redundant’ VGA Peripheral. Only the Primary block should have
its AHB outputs connected to the rest of the SOC. To be able to detect a fault, the outputs from the
Primary and Redundant blocks shall be connected to a comparator that compares the outputs from
the two blocks on every clock cycle (i.e. they run in lock-step). If any difference in the outputs is
detected, the comparator shall assert the signal DLS_ERROR

DLS Comparator Output Signal Description

Output signal name Purpose
DLS_ERROR Dual Lock-Step Error

Note that to verify the operation of the comparator, you will need to implement some way of
injecting a fault in the Primary or Redundant blocks (or in the comparator itself).

Primary VGA
Peripheral

Redundant VGA
Peripheral

AHB inputs

(address,
data,
control,

clock,

reset)

AHB-Lite

Interface

AHB outputs

(data, control)

Comparator
VGA Peripheral
outputs

VGA Peripheral
outputs

AHB outputs

DLS_ERROR

