
An Introduction to Isabelle
for Electrical Engineers

John Wickerson

November 11, 2020

Contents

1 Introduction 2

2 Getting started 4

3 Proofs by hand, and proofs by machine 5
3.1 A first proof . 5
3.2 Discussion: The meta logic and the object logic 9
3.3 A second proof . 10
3.4 Two styles of Isabelle proof . 12

4 Inductive proofs 15
4.1 A proof about triangle numbers 16
4.2 A proof about tetrahedral numbers 18

5 A verified logic synthesiser 24
5.1 Representing circuits . 24
5.2 Simulating circuits . 25
5.3 Structural induction on circuits 26
5.4 A simple circuit optimiser . 28
5.5 Rule induction . 30
5.6 Verifying our optimiser . 31

1

Chapter 1

Introduction

This document provides an introduction to automated theorem-proving using a
tool called Isabelle. It is aimed at an audience of electrical engineers. Some prior
programming experience is assumed. Competence with functional programming
(e.g. in Haskell or OCaml) is a bonus. No particularly complicated mathematics
is needed, but an ability to create structured, logical arguments will be helpful.

Isabelle is one of several tools available for automating mathematical proofs.
Others include Coq, HOL, and PVS. Isabelle was invented in the late 1980s by
Larry Paulson from the University of Cambridge, and has been under development
ever since. It is freely available to download.

https://isabelle.in.tum.de

There is a growing interest in using tools like Isabelle. In short, computer
systems are becoming increasingly complicated and increasingly relied upon. It
is therefore becoming ever more difficult and ever more important to guarantee
that they behave correctly. One way to establish the correctness of a computer
system is to program it in a tool like Isabelle, and to prove its correctness as a
mathematical theorem. Already, we have entire compilers (such as CompCert [3]
and CakeML [2]), entire operating systems (such as seL4 [1]), and entire proces-
sors (such as Silver [4]) implemented and verified correct inside theorem-proving
tools. And as these theorem-proving tools become ever more powerful, we are
likely to see them applied to many other systems in the future.

The aim of this course, then, is simply to introduce electrical engineers to this
important topic.

After getting you started (Chapter 2), these notes present a few worked exam-
ples of how some standard proofs can be recreated in Isabelle (Chapters 3 and 4).
Then we show how Isabelle can be used to program a simple logic synthesiser,
and ultimately to prove that the synthesiser is correct (Chapter 5).

2

Acknowledgements I’d like to thank Mr Yann Herklotz and Dr Matt Windsor
for their invaluable help in developing this material.

3

Chapter 2

Getting started

Isabelle can be downloaded from https://isabelle.in.tum.de. The de-
velopment environment is based on jEdit, and takes a little bit of getting used to.
At some point there was an Eclipse plug-in for Isabelle but I’m not sure it’s still
maintained.

Some Linux systems may require the following environment variable to be set
in order for jEdit to work properly:

export _JAVA_AWT_WM_NONREPARENTING=1

4

Chapter 3

Proofs by hand, and proofs by
machine

In this chapter, we look at the structure of a few standard mathematical proofs,
and see how they can be recreated in Isabelle.

3.1 A first proof
Figure 3.1 gives a standard mathematical theorem, and the kind of proof that might
accompany it in a textbook. Figure 3.2 presents the same theorem and the same
proof again, this time programmed into Isabelle. (I have taken a few typograph-
ical liberties to improve the presentation. The original proof script is available
separately.) Let us step through the proof line-by-line.

1 When we state a theorem, Isabelle expects the statement to be immediately
followed by a proof. If you’re not ready to give a proof right now, you
can type sorry instead. This will let you work on other theorems later on
in your proof file, and come back to proving this theorem later. Instead of
theorem we could have typed lemma. This means the same from Isabelle’s
point of view, but generally indicates a less important theorem.

2 A proof begins with proof and ends with qed. If the proof is a one-liner,
you can just use by instead. The argument to the proof command tells
Isabelle how to begin the proof. If we’d rather take full control, we can
write proof - to tell Isabelle not to do anything yet. Here we are using
auto, which instructs Isabelle to use a variety of automatic techniques to
try to simplify our proof goals (and maybe even to finish the proof straight
away if we’re lucky). In this case, auto has changed our goal from

5

Theorem 1.
√
2 is irrational.

Proof. To show that
√
2 is not rational, we shall assume that it is rational, and

deduce a contradiction. To this end, suppose
√
2 is rational. Then we can

obtain integers m and n such that
√
2 = m/n, where n > 0 and gcd(m,n) =

1. Squaring both sides gives us 2 = m2/n2, and hence 2n2 = m2. This means
that m2 is even, and hence so is m. Hence, we can obtain an integer m′ such
thatm = 2m′. It follows that 2n2 = (2m′)2, and hence n2 = 2m′. This means
that n2 is even, and hence so is n. But if both m and n are even, their gcd is
at least 2, which contradicts the fact that gcd(m,n) = 1. Thus our original
supposition must have been wrong, which means that

√
2 is not rational.

Figure 3.1: A proof by hand that
√
2 is irrational.

1 theorem
√
2 /∈ Q

2 proof auto

3 assume
√
2 ∈ Q

4 then obtain m n where
5 n 6= 0 and |

√
2| = realm/realn and coprimemn

6 by (rule Rats_abs_nat_div_natE)

7 hence |
√
2|2 = (realm/realn)2 by auto

8 hence 2 = (realm/realn)2 by simp
9 hence 2 = (realm)2/(realn)2 unfolding power_divide by auto

10 hence 2× (realn)2 = (realm)2

11 by (simp add: nonzero_eq_divide_eq ‘n 6= 0‘)
12 hence real(2× n2) = (realm)2 by auto
13 hence *: 2× n2 = m2

14 using of_nat_power_eq_of_nat_cancel_iff by blast
15 hence even(m2) by presburger
16 hence evenm by simp
17 then obtain m′ where m = 2×m′ by auto
18 with * have 2× n2 = (2×m′)2 by auto
19 hence 2× n2 = 4 ∗m′2 by simp
20 hence n2 = 2×m′2 by simp
21 hence even(n2) by presburger
22 hence evenn by simp
23 with ‘evenm‘ and ‘coprimemn‘ show False by auto
24 qed

Figure 3.2: A proof in Isabelle that
√
2 is irrational.

6

Assume: (nothing)
Show:

√
2 /∈ Q

to
Assume:

√
2 ∈ Q

Show: False

also known as proof of negation.

3 Our goal allows us to assume
√
2 ∈ Q, so we issue the assume command

to make this fact available for future proof steps. We could make multiple
assumptions in one line by separating them with and.

4–6 We want to exploit the fact that if a number is in Q then it can be expressed as
the ratio between two integers. A search of Isabelle’s library for theorems
that include the pattern “_ ∈ Q” yields the following theorem:

Theorem name: Rats_abs_nat_div_natE
Assumptions: x ∈ Q
Conclusions: n 6= 0

|x| = realm/realn
coprimemn

By the way, we shall use the convention that variables appearing in assump-
tions are universally quantified (which means that the theorem is true for
any values of those variables), while variables that only appear in conclu-
sions are existentially quantified (which means that the theorem is true for
some values of those variables). That means that the theorem above can
be read as “For any x, if x is a rational number, then there exist integers n
and m such that n 6= 0, the absolute value of x is m/n, and m and n are
coprime.” We need the real function here to cast from integers to reals – it’s
a bit like writing (float)m in C++.

We write out the conclusions of the theorem, with x instantiated to
√
2,

using obtain for the existentially-quantified variables m and n, and and
to separate the three conclusions of the theorem. At the end of line 5, our
goal is

Assume:
√
2 ∈ Q

Show: n 6= 0

|
√
2| = realm/realn

coprimemn

This is a perfect match with Rats_abs_nat_div_natE, so the rulemethod
will complete this goal easily.

7

7 We now wish to square both sides of the equation. We use the hence command,
which allows us to state a new fact that we wish to prove, using the facts
from the previous line as assumptions. Our goal becomes

Assume: n 6= 0

|
√
2| = realm/realn

coprimemn

Show: |
√
2|2 = (realm/realn)2

which is easily dealt with by auto. (In fact, only the second of those three
assumptions is needed here, but the other two assumptions don’t hurt.) In
general it is quite a good idea to issue ‘by auto’ after each fact you state,
to see whether Isabelle can prove it for you without further ado. There are
other methods available, such as simp, clarify, clarsimp, blast, and
presburger. These methods tend to run faster than auto, so if you use
them where possible then your proof script may run more quickly than one
that is full of autos. If you’re not sure which of these automated methods
will work, you can simply type try. This invokes Isabelle’s sledgehammer,
which tries all of these automated methods simultaneously, and reports the
first one that succeeds, for you to paste into your proof script.

8 We then wish to replace |
√
2|with 2. This is a straightforward task for Isabelle’s

automatic simplifier (simp). You might find that the proof can be optimised
by jumping straight to this fact and omitting line 7. Or you might prefer to
include these intermediate steps so that the human reading the proof can see
what’s going on in more detail – it’s up to you.

9 We now want to rewrite the right-hand side of our equation by pushing the
squaring operation ‘inside’ the division operation. A search of the Isabelle
library for theorems that include the pattern “(_/_)_” yields one called
power_divide, which tells us (a/b)n = an/bn. Since this fact is expressed
as an equality, we have an opportunity to demonstrate the unfolding com-
mand, which simply rewrites our goal by replacing any instances of the
(a/b)n pattern with a corresponding instance of the an/bn pattern.

10–11 Next, we wish to move the n over to the other side of the equation. We find
the nonzero_eq_divide_eq theorem in the Isabelle library, which tells
that we can do this providing n is not zero. We can complete this step of our
proof using Isabelle’s simplification engine, once we provide it with two ad-
ditional facts using the add parameter: the nonzero_eq_divide_eq the-
orem itself, and the fact that n is indeed not zero. Note the use of backticks
to refer to a fact ‘by contents’. We could alternatively have given the n 6= 0

8

fact a label when we introduced it on line 5, and then referred to it by that
label, at the small cost of complicating the proof with extra labels.

12 Next we bring the real function outside the multiplication. This step is straight-
forward for auto.

13–14 At this point we can drop the real function from both sides of our equa-
tion. The justification for this step uses a fairly arcane theorem, which was
discovered using the try command. We give this fact the label * so that we
can refer back to it later. You can also use numbers and letters to label facts.

15 We next deduce that m2 is even.

16 It follows that m is also even. Isabelle finds this step very straightforward –
simp is quite sufficient. As a human, I find this step a little less obvious
than some of the steps that Isabelle required quite a bit of guidance with.

17 We can introduce the new variable m′ using the obtain keyword.

18 The with * have phrase means “using the facts from the previous line to-
gether with the fact with label ‘*’ we can prove the following fact”.

19–22 A straightforward sequence of steps leads us to deduce that n is even.

23 The combination of n being even, m being even, and m and n being coprime
leads to a contradiction. We use the keyword show here rather than have,
to show that we are meeting the goal we set ourselves immediately after the
proof auto command.

24 The proof is now complete; quod erat demonstrandum!

3.2 Discussion: The meta logic and the object logic
Isabelle allows us not only to write down logical statements, but to write down
judgements about those logical statements. This is a subtle distinction, best illus-
trated by example. Consider the following four statements.

1. For every x, if it is the case that even(x) holds and it is the case that odd(x)
holds then it is the case that x = 0 holds.

2. For every x, if it is the case that even(x) ∧ odd(x) holds then it is the case
that x = 0 holds.

3. For every x, it is the case that (even(x) ∧ odd(x)) −→ x = 0 holds.

9

4. It is the case that ∀x. (even(x) ∧ odd(x)) −→ x = 0 holds.

All four statements are expressing the same sentiment – a sentiment that, inci-
dentally, is correct. In each case we are using the meta logic to talk about phrases
in the object logic. The meta logic includes phrases like “it is the case that _
holds” and “for every _” and “if _ then _”. The object logic includes phrases like
“_ ∧ _” and “_ −→ _” and “∀_. _”. In the first statement, we are using the meta
logic to combine three small phrases in the object logic; in the fourth statement,
we do all the combining within the object logic.

Isabelle is a generic proof assistant, which means that it has a single meta
logic, but can be instantiated with several different object logics. We are using
Isabelle/HOL in this course, which means Isabelle instantiated with ‘higher-order
logic’. This is the default object logic, so we often just write ‘Isabelle’ for sim-
plicity.

The actual syntax that Isabelle employs in its meta logic is not quite as verbose.
It really looks like this

1.
∧
x. Jeven(x); odd(x)K =⇒ x = 0

2.
∧
x. even(x) ∧ odd(x) =⇒ x = 0

3.
∧
x. (even(x) ∧ odd(x)) −→ x = 0

4. ∀x. (even(x) ∧ odd(x)) −→ x = 0

Quite a bit of the donkey work while building a proof in Isabelle involves
moving phrases between the meta logic and the object logic. Typically, a theorem
might be phrased as a single statement in the object logic (like the fourth statement
in the list above), and in order to use it or prove it, the first thing we need to do
is unpack it into the meta logic (so that it looks like the first statement in the list
above). We will see an example of this in our next proof.

3.3 A second proof
Figure 3.3 gives another standard mathematical theorem and its proof ‘by hand’.
Figure 3.4 gives that proof again, this time programmed into Isabelle. Again, I
have taken a few typographical liberties to improve the presentation here. The
original proof script is also available. Let us now step through the proof line-by-
line.

10

Theorem 2. There is no greatest even number.

Proof. To show that the greatest even number does not exist, we shall assume
that it does, and deduce a contradiction. To this end, suppose there is a greatest
even number, and call it n. But if n is even, then so is n+ 2, which is greater
than n. This contradicts the assumption that n is the greatest even number.
Therefore, the greatest even number does not exist.

Figure 3.3: A proof ‘by hand’ that there is no greatest even number.

1 theorem ∀n :: Z. evenn −→ (∃m. evenm ∧m > n)
2 proof clarify
3 fix n :: Z
4 assume evenn
5 hence even(n+ 2) by simp
6 moreover
7 have n < (n+ 2) by simp
8 ultimately
9 show ∃m. evenm ∧ n < m by blast

10 qed

Figure 3.4: A proof in Isabelle that there is no greatest even number.

1 The statement of the theorem is a little involved. It can be read as: “for any
integer n, if n is even, then there exists an m that is also even and greater
than n”.

Our goal at this point is as follows:

Assume: (nothing)
Show: ∀n :: Z. evenn −→ (∃m. evenm ∧m > n)

2 We begin the proof by applying the clarify method, which tries to move
statements from the object logic into Isabelle’s meta logic, as discussed in
the last section. The result of this is that our goal becomes:

Assume: evenn
Show: ∃m. evenm ∧m > n

3 This line can be read as “Let n be an arbitrary integer.”

4 Our goal allows us to assume evenn, so we use the assume command to do
this.

11

5 We need to show the existence of an m that is greater than n and also even. We
shall pick m to be n+ 2. On this line of the proof we establish that n+ 2 is
even.

6–8 The moreover keyword can be thought of as an instruction to set aside
the current line of reasoning for a moment, so that another line of rea-
soning can be established. We can use the moreover keyword repeat-
edly to establish several lines of reasoning. Eventually we will use the
ultimately keyword to draw together all of the lines of reasoning. The
moreover. . .ultimately pattern is handy because it avoids the need to
label as many facts, and too many labels can make proofs become unwieldy.

9–10 The ultimately command makes the facts even(n+ 2) and n < (n+ 2)
available. From these, our desired conclusion follows by instantiating m to
n+ 2.

3.4 Two styles of Isabelle proof
The style of Isabelle proof we have used so far is called structured proof. This
style uses keywords like assume, hence, and moreover in an attempt to mimic
the language of proofs done ‘by hand’. There is another style of Isabelle proof,
called procedural proof. Here, a proof consists solely of a list of instructions that
manipulate the goal until there is nothing left to prove. This style can be more
concise, but can lead to less readable proofs.

Here is our previous proof repeated using the procedural style.

1 theorem ∀n :: Z. evenn −→ (∃m. evenm ∧m > n)
2 apply clarify
3 apply (rule_tac x=n+ 2 in exI)
4 apply (rule conjI)
5 apply simp
6 apply (thin_tac evenn)
7 apply simp
8 done

Let us now step through the proof line-by-line.

1 At the end of this line, our goal is

Assume: (nothing)
Show: ∀n :: Z. evenn −→ (∃m. evenm ∧m > n)

2 After we apply the clarify method, our goal becomes

12

Assume: evenn
Show: ∃m. evenm ∧m > n

So far, this is similar to the structured proof we already saw.

3 Our goal is to show a statement of the form “there exists m such that . . . ”.
A handy rule for introducing existentially-quantified variables like this is
called exI (which is short for ‘existential introduction’). That rule says:

Theorem name: exI
Assumptions: P x
Conclusions: ∃y. P y

that is, in order to demonstrate the truth of ∃y. P y for some property P ,
it suffices to show that P x holds, for any choice of x. The conclusion of
exI exactly matches with what we which to show, once P is instantiated
to the function that checks whether its argument is even and greater than n.
Because the conclusion matches, we can apply the rule method. In fact,
we can be more precise here: we can specify that when we use the exI rule,
we shall instantiate the x in that rule to n + 2. We do that by issuing the
instruction rule_tac x=n+ 2 in exI. (‘Tac’ is short for tactic.) Our
goal becomes:

Assume: evenn
Show: even(n+ 2) ∧ (n+ 2) > n

4 Our goal is now to show a statement of the form “P ∧ Q”. A handy rule for
showing goals that look like this is called conjI (which is short for ‘con-
junction introduction’). That rule says:

Theorem name: conjI
Assumptions: P

Q
Conclusions: P ∧Q

that is, to show the truth of P ∧ Q, it suffices to show the truth of P and
the truth of Q. After applying the rule conjI method, we now have two
goals, as follows:

Assume: evenn
Show: even(n+ 2)

Assume: evenn
Show: (n+ 2) > n

5 We attack the first goal first. However, we could choose to reorder our goals if
we wanted: the defer command would send the current goal to the end of
the list, and the prefer N command would bring the N th goal to the start
of the list. In this case, the first goal can be dispatched by simp.

13

6 Only a single goal remains. It is notable that this goal does not require its
assumption that n is even. We can dispense with this assumption by using
the thin_tac method. When conducting a large proof, it can be a good
idea to ‘thin’ the list of assumptions by removing those that are no longer
needed.

7 After applying the simp method, no goals remain. The proof is complete. (In
fact, we could have used this method several steps earlier.)

8 A procedural proof is terminated using the done keyword.

14

Chapter 4

Inductive proofs

We shall now look at a couple of proofs that use the principle of mathematical
induction.

Mathematical induction (or just ‘induction’ for short) is a useful tool for show-
ing that some property of interest, say P , holds for all natural numbers. In symbols
we would write:

∀n ∈ N. P (n) (4.1)

which can be read literally as ‘for every n that is a natural number (i.e. a non-
negative integer), property P holds of n’. We will see some examples of these
properties shortly.

Mathematical induction tells us that in order to prove (4.1), it suffices to prove
the following two statements, which are (hopefully) easier to prove than just tack-
ling (4.1) head-on. The first thing we must prove is that the property holds of zero,
the first natural number:

P (0) (4.2)

and the second thing we must prove is that whenever the property holds of k (for
any k), it also holds of k + 1:

∀k ∈ N. P (k)⇒ P (k + 1) (4.3)

Having established just two facts – (4.2), which is known as the base case, and
(4.3), which is known as the inductive step – we can immediately deduce that
P holds for all natural numbers. The base case tells us that P holds for 0. The
inductive step with k instantiated to 0 tells us that since P holds for 0, it also holds
for 1. Then the inductive step (again) with k instantiated to 1 tells us that since P
holds for 1, it also holds for 2. You can see that this reasoning will extend to all
natural numbers (eventually!).

15

Remark 1. We have seen a form of inductive reasoning already, in the Dafny part
of the course. When establishing a loop invariant, we must show that it holds on
entry to the loop (the base case), and that it is maintained by any iteration of the
loop (the inductive step). From this we deduce that it must hold at the end of any
number of iterations of the loop, and hence must hold if the loop finally exits.

In summary, the principle of mathematical induction can be expressed con-
cisely as follows:

Theorem name: nat_induct
Assumptions: P 0

∀k. P k ⇒ P (Suc k)
Conclusions: ∀n. P n

where Suc k is the ‘successor’ of k, also known as k + 1.

4.1 A proof about triangle numbers
Here are the first few triangular numbers:

triangle(0) 0
triangle(1) 1
triangle(2) 3

triangle(3) 6

triangle(4) 10

The following recursive function can be used to calculate triangular numbers:

triangle(n) =

{
0 if n = 0

n+ triangle(n− 1) if 1 ≤ n

In Isabelle, we would write that as:

fun triangle :: N⇒ N where
trianglen = (if n = 0 then 0 else n+ triangle(n− 1))

Triangular numbers can also be obtained via a direct, non-recursive formula,
also called a closed form:

triangle(n) =
(n+ 1)n

2

16

Theorem 3. For all n ≥ 0, triangle(n) = (n+ 1)n/2.

Proof. We proceed by mathematical induction.

Base case. To show the base case, we must prove that

triangle(0) = (0 + 1)0/2.

This is a straightforward consequence of the first clause of the definition
of triangle.

Inductive step. Pick an arbitrary k, and assume

triangle(k) = (k + 1)k/2

as our induction hypothesis. We prove that

triangle(k + 1) = (k + 2)(k + 1)/2

by the following chain of equational reasoning:

triangle(k + 1)

= {by the definition of triangle, second clause}
k + 1 + triangle(k)

= {by the induction hypothesis}
k + 1 + (k + 1)k/2

= {by algebraic manipulation}
(k + 2)(k + 1)/2

Figure 4.1: A proof by hand that the recursive definition and closed form of trian-
gular numbers coincide.

1 theorem triangle_closed_form: trianglen = (n+ 1)× n div 2
2 apply (induct n)
3 apply simp+
4 done

Figure 4.2: A proof in Isabelle that the recursive definition and closed form of
triangular numbers coincide.

17

In Figure 4.1, we state and prove a theorem that says that the recursive defini-
tion and the closed form of triangular numbers coincide.

In Figure 4.2, we state and prove the same theorem in Isabelle. Let us step
through the proof line-by-line.

1 The statement of the theorem uses integer division, which is written using the
infix operator ‘div’. (Ordinary division is defined on real numbers, which
we don’t want here.) We have given this theorem a name, just in case we
want to invoke in when proving a later theorem.

2 The proof is rather short, so we elect for the procedural style. We begin by ask-
ing Isabelle to apply the principle of mathematical induction on the variable
n.

3 Our goals at the beginning of this line are the base case and the inductive step.
In fact, both can be dispatched easily using Isabelle’s simplifier. To this end,
we could write apply simp twice, or we can use the + symbol, as we have
done here, to say ‘keep applying this tactic until it can do no more’.

4.2 A proof about tetrahedral numbers
Below are the first few tetrahedral numbers. Tetrahedral number n (written tet(n))
is the number of spheres stacked in a pyramid whose base is a triangle with sides
of length n.

tet(0) 0
tet(1) 1
tet(2) 4
tet(3) 10
tet(4) 20

The following recursive function can be used to calculate tetrahedral numbers:

tet(n) =

{
0 if n = 0

triangle(n) + tet(n− 1) if 1 ≤ n

In Isabelle, we would write that as:

fun tet :: N⇒ N where
tetn = (if n = 0 then 0 else trianglen+ tet(n− 1))

18

Tetrahedral numbers can also be obtained via a closed form:

tet(n) =
(n+ 2)(n+ 1)n

6

In Figure 4.3, we state and prove a theorem that says that the recursive defini-
tion and the closed form of tetrahedral numbers coincide.

In Figure 4.4, we state and prove the same theorem in Isabelle. Let us step
through the proof line-by-line.

2 This is going to be a fairly hefty proof, so we will use the structured proof style.
We begin our structured proof by induction on n. (Note that when using the
jEdit IDE, if you type proof (induct ...), a skeletal induction proof
is provided for you to fill in.)

3 We begin the base case of our induction proof.

4 The base case can be dispatched by the simplifier. (Note that ?case here is an
abbreviation, provided by Isabelle, for the actual base case of the proof. It
saves us having to type it out.)

5 We move on to the next case.

6 We begin the inductive step.

7 We assume our induction hypothesis. In fact, this line is not necessary – the
induction hypothesis is assumed implicitly on line 6. But it doesn’t hurt to
make it explicit, and doing so gives us an opportunity to give it a memorable
label, here IH.

9–10 Here we establish that (k+2)× (k+1)× 3 is divisible by 6. This fact will
be handy later on.

12–30 Here we establish that (k+2)× (k+1)× k is also divisible by 6, another
fact that will be handy shortly. The reasoning is: (k + 2) × (k + 1) × k
is divisible by 2 (line 12), moreover, it is divisible by 3 (lines 13–29), so
ultimately we can deduce that it is divisible by 6 (line 30). The proof of
divisibility by 3 is done by considering the three possible remainders when
dividing k by 3. We use braces here to delimit the scope of the three local
assumptions we make (lines 16, 20, and 24).

32–45 We now use a chain of equational reasoning to show that tet(Suc k) is
equal to (Suc k + 2)× (Suc k + 1)× Suc k div 6. Isabelle provides handy
syntax for this. In general, if we want to show that A is equal to D by

19

showing that A is equal to B, which is equal to C, which is in turn equal
to D, we have a few ways to write this. We could use a series of have
commands:

have 1: A = B by 〈proof 〉
have 2: B = C by 〈proof 〉
have 3: C = D by 〈proof 〉
have A = D using 1 2 3 by simp

but this involves thinking up a label for each intermediate fact, which can
clutter proofs. Instead, we could use the moreover..ultimately con-
struction:

have A = B by 〈proof 〉
moreover have B = C by 〈proof 〉
moreover have C = D by 〈proof 〉
ultimately have A = D by simp

which avoids the need for labels, but still requires quite a lot of typing if B
and C are large formulas – both need to be written out repeatedly. So, we
can use the also..finally construction:

have A = B by 〈proof 〉
also have . . . = C by 〈proof 〉
also have . . . = D by 〈proof 〉
finally have A = D by simp

in which the previous line’s right-hand side can be abbreviated as In
fact, this construction even works for operators other than =. For instance,
we could construct a chain like A = B ≤ C = D < E ≤ F and deduce
that A < F . Of course, all the operators in the chain have to be compatible
and pointing in the same direction – we can’t deduce much from A < B ≥
C = D for instance.

41–42 There is a subtlety in the Isabelle proof that we didn’t really think about
in the proof by hand. It has to do with the fact that we are using integer
division in the Isabelle proof, but we used ordinary division in the proof by
hand. Isabelle demands that we are much more disciplined with types than
ordinary maths does – we cannot just switch freely between real numbers
and integers like we can on paper. In the proof by hand, we exploited the
identity

a

c
+
b

c
=
a+ b

c

20

which is true for ordinary division. But the analogous identity for integer
division

a div c+ b div c = (a+ b) div c

does not hold in general. (To see this, try a = 1, b = 2, and c = 3.) It does
work, however, if a and b are divisible by c. That is, the following theorem
holds:

Theorem name: div_add
Assumptions: c dvd a

c dvd b
Conclusions: a div c+ b div c = (a+ b) div c

On line 39, we invoke this theorem. We use the OF syntax to instantiate the
theorem’s two assumptions with the two facts we proved earlier.

43 Sometimes the sledgehammer comes up with some truly arcane proofs!

21

Theorem 4. For all n ≥ 0, tet(n) = (n+ 2)(n+ 1)n/6.

Proof. We proceed by mathematical induction.

Base case. To show the base case, we must prove that

tet(0) = (0 + 2)(0 + 1)0/6.

This is a straightforward consequence of the first clause of the definition
of tet.

Inductive step. Pick an arbitrary k, and assume

tet(k) = (k + 2)(k + 1)k/6

as our induction hypothesis. We prove that

tet(k + 1) = (k + 3)(k + 2)(k + 1)/6

by the following chain of equational reasoning:

tet(k + 1)

= {by the definition of tet, second clause}
triangle(k + 1) + tet(k)

= {by Theorem 3}
(k + 2)(k + 1)/2 + tet(k)

= {by the induction hypothesis}
(k + 2)(k + 1)/2 + (k + 2)(k + 1)k/6

= {by algebraic manipulation}
(k + 3)(k + 2)(k + 1)/6

Figure 4.3: A proof by hand that the recursive definition and closed form of tetra-
hedral numbers coincide.

22

1 theorem tetn = ((n+ 2)× (n+ 1)× n) div 6
2 proof (induct n)
3 case 0
4 show ?case by simp
5 next
6 case (Suc k)
7 assume IH: tet k = (k + 2)× (k + 1)× k div 6
8

9 have 2 dvd (k + 2)× (k + 1) by simp
10 hence *: 6 dvd (k + 2)× (k + 1)× 3 by presburger
11

12 have 2 dvd (k + 2)× (k + 1)× k by simp
13 moreover have 3 dvd (k + 2)× (k + 1)× k
14 proof -
15 {
16 assume k mod 3 = 0
17 hence 3 dvd k by presburger
18 hence 3 dvd (k + 2)× (k + 1)× k by fastforce
19 } moreover {
20 assume k mod 3 = 1
21 hence 3 dvd (k + 2) by presburger
22 hence 3 dvd (k + 2)× (k + 1)× k by fastforce
23 } moreover {
24 assume k mod 3 = 2
25 hence 3 dvd (k + 1) by presburger
26 hence 3 dvd (k + 2)× (k + 1)× k by fastforce
27 } ultimately
28 show 3 dvd (k + 2)× (k + 1)× k by linarith
29 qed
30 ultimately have **: 6 dvd (k + 2)× (k + 1)× k by presburger
31

32 have tet(Suc k) = triangle(Suc k) + tet k
33 by simp
34 also have . . . = (k + 2)× (k + 1) div 2 + tet k
35 using triangle_closed_form by simp
36 also have . . . = (k + 2)× (k + 1) div 2 + (k + 2)× (k + 1)× k div 6
37 using IH by simp
38 also have . . . = ((k + 2)× (k + 1)× 3 + (k + 2)× (k + 1)× k) div 6
39 using div_add[OF * **] by simp
40 also have . . . = (k + 2)× (k + 1)× (k + 3) div 6
41 by (simp add: distrib_left)
42 also have . . . = (Suc k + 2)× (Suc k + 1)× Suc k div 6
43 by (metis One_nat_def Suc_1 add.commute add_Suc_shift mult.assoc
44 mult.commute numeral_3_eq_3 plus_1_eq_Suc)
45 finally show ?case by assumption
46 qed

Figure 4.4: A proof in Isabelle that the recursive definition and closed form of
tetrahedral numbers coincide.

23

Chapter 5

A verified logic synthesiser

We shall now use Isabelle to implement and verify a logic synthesiser. A logic
synthesiser is a program that takes a description of a circuit and outputs a new
circuit that has the same behaviour but is ‘optimised’ in some way, perhaps by
reducing the number of gates or by reducing the critical path.

5.1 Representing circuits
To implement our synthesiser, we first need a data structure that can represent
circuits.

1 datatype circuit =
2 NOT circuit
3 | AND circuit circuit
4 | OR circuit circuit
5 | TRUE
6 | FALSE
7 | INPUT Z

This is an example of a recursive definition. It says that a circuit is either a
constant TRUE, a constant FALSE, or an input terminal (identified by an integer),
or else is built by combining smaller circuits with NOT, AND, and OR gates.

Here are some examples of circuits we can define using this data structure.
Table 5.1 shows how each example can be depicted graphically.

1 definition circuit1 == AND (INPUT 1) (INPUT 2)
2 definition circuit2 == OR (NOT circuit1) FALSE
3 definition circuit3 == NOT (NOT circuit2)
4 definition circuit4 == AND circuit3 (INPUT 3)

It is notable that our data structure only supports circuits that have no fan-out.
That is, no gate has its output connected (directly) to more than one other gate.

24

circuit1:
1

2

circuit2:

1

2

FALSE

circuit3:

1

2

FALSE

circuit4:

1

2

FALSE

3

Table 5.1: Examples of circuits

Our circuits can have any number of inputs, but they always have exactly one
output wire. This restriction will simplify the task of implementing a synthesiser.
(An ‘extension’ task involves working out how to avoid this restriction.)

5.2 Simulating circuits
Next we define a function called simulate that can be used to simulate a circuit.
The function takes two arguments: a circuit and a wire valuation. A wire valua-
tion, written ρ, assigns a truth value (True or False) to every input. The output of
the simulate function is the truth value of the output wire.

1 fun simulate where
2 simulate (AND c1 c2) ρ = ((simulate c1 ρ) ∧ (simulate c2 ρ))
3 | simulate (OR c1 c2) ρ = ((simulate c1 ρ) ∨ (simulate c2 ρ))
4 | simulate (NOT c) ρ = (¬ (simulate c ρ))
5 | simulate TRUE ρ = True

25

6 | simulate FALSE ρ = False
7 | simulate (INPUT i) ρ = ρ i

The simulate function is defined recursively. This means that the result of the
function on a large circuit is built up by first simulating the smaller subcircuits that
it contains. For instance, line 2 says that to simulate a circuit that is formed by
ANDing together the outputs of two subcircuits (c1 and c2), one should simulate
both c1 and c2 and then use logical conjunction (∧) to combine the two truth val-
ues thus obtained. Lines 3 and 4 use logical disjunction (∨) and logical negation
(¬). To simulate a circuit that consists solely of an input port (line 7), we consult
the wire valuation ρ.

As an example: if ρ is defined such that ρ(1) = True, ρ(2) = False, and
ρ(3) = True then simulate circuit4 ρ will return True.

5.3 Structural induction on circuits
Let us define a function called mirror that takes a circuit and transforms it into
one in which the two inputs to each AND or OR gate have been switched around.
This function is not actually useful for anything; its purpose is to demonstrate
a transformation that we might do to a circuit, and how we can prove that this
transformation doesn’t change the behaviour of the circuit.

1 fun mirror where
2 mirror (NOT c) = NOT (mirror c)
3 | mirror (AND c1 c2) = AND (mirror c2) (mirror c1)
4 | mirror (OR c1 c2) = OR (mirror c2) (mirror c1)
5 | mirror TRUE = TRUE
6 | mirror FALSE = FALSE
7 | mirror (INPUT i) = INPUT i

The mirror function is, like simulate, defined recursively. The clauses on
lines 3 and 4 are the interesting ones. Line 3 says that in order to mirror a circuit
of the form AND c1 c2, we should first mirror c1 and c2 individually, and then
feed their outputs, swapped around, into an AND gate. Line 4 is similar, but for OR
gates. Line 2 says that to mirror a circuit of the form NOT c, we should mirror c
on its own, and then restore the NOT gate on its output. Once the transformation
reaches the ‘leaves’ of the circuit ‘tree’ (that is, TRUE, FALSE, and INPUT i),
there is nothing more for the transformation to do.

As an example, mirror circuit2 looks like the picture below.

26

FALSE

2

1

We now wish to prove that this transformation is correct. In order to do so,
we must first be precise about what we mean by ‘correct’. What we cannot say,
for instance, is that the transformation does not change the circuit at all, which is
what the following theorem tries to claim.

theorem mirror c = c
oops

Indeed, Isabelle is able to contradict that theorem for us even before we have
started a (doomed) effort to prove it, by exhibiting the following simple coun-
terexample.

TRUE

FALSE

What we can prove, however, is that our transformation will not change the
result of simulating the circuit, whatever wire valuation we provide.

theorem mirror_is_sound: simulate (mirror c) ρ = simulate c ρ

How can we prove this theorem?
We use a principle called structural induction. This is a generalisation of

mathematical induction. It can be used on any data stucture that is defined recur-
sively, such as our circuit . The principle of structural induction for our circuit
data structure is as follows:

Theorem name: circuit.induct
Assumptions: ∀k. P k ⇒ P (NOT k)

∀k1, k2. (P k1 ∧ P k2)⇒ P (AND k1 k2)
∀k1, k2. (P k1 ∧ P k2)⇒ P (OR k1 k2)
P (TRUE)
P (FALSE)
∀i. P (INPUT i)

Conclusions: ∀c. P c

The conclusion of the circuit.induct theorem is that for every circuit c,
some property P holds. In order to reach this conclusion, our theorem requires six

27

assumptions, one for each of the ways of building circuits. The first says that if
the property holds of an arbitrary circuit k, then it still holds if a NOT gate is put on
the output of k (which we write as NOT k). The second says that if the property
holds of two arbitrary circuits k1 and k2, then it also holds of a circuit that is
constructed by combining the outputs of k1 and k2 using an AND gate (which we
write as AND k1 k2). The third is similar, but for OR gates. The fourth says that
the property must hold for the constant-true circuit. The fifth and sixth deal with
the other two non-recursive constructions.

Remark 2. The best way to understand structural induction is to see how mathe-
matical induction ‘drops out’ as a special case. To this end, consider the following
data structure:

datatype myNat =
ZERO

| SUC myNat

Every myNat is either ‘ZERO’ or is built from an existing myNat using the
‘SUC’ construction. We can derive a principle of structural induction for this data
structure following the same pattern that we used for circuit.induct, like so:

Theorem name: mynat.induct
Assumptions: P (ZERO)

∀k. P k ⇒ P (SUC k)
Conclusions: ∀n. P n

If you compare this with the nat_induct theorem from the previous section,
you will see that it is the same (except for slightly different syntax). In fact, the
recursive definition above is exactly how natural numbers are actually defined in
Isabelle!

As for the proof itself, we can proceed as shown in Figure 5.1. Isabelle can
manage this proof with very little assistance, as shown in Figure 5.2.

5.4 A simple circuit optimiser
Next, we define a function called optNOT that takes a circuit and transforms it into
one in which all pairs of consecutive NOT gates have been removed. The motiva-
tion for this is that two successive inversions have no effect on the behaviour of a
circuit, and by removing them we may reduce the circuit’s area and energy usage.

1 fun optNOT where
2 optNOT (NOT (NOT c)) = optNOT c

28

Theorem 5. For all circuits c and all wire valuations ρ, we have

simulate (mirror c) ρ = simulate c ρ.

Proof. First define the property P such that

P (c) = (simulate (mirror c) ρ = simulate c ρ)

Our aim is to show P (c) holds for all circuits c. We proceed by structural
induction on c. We will present just two of the six cases.

Case ‘TRUE’. To show this case, we must prove P (TRUE), which is

simulate (mirror TRUE) ρ = simulate TRUE ρ.

This is a straightforward consequence of the definition of mirror (fourth
clause) and the definition of simulate (fourth clause).

Case ‘AND’. To show this case, we pick arbitrary circuits k1 and k2, assume
P (k1) and P (k2), and prove P (AND k1 k2). That is, we assume

simulate (mirror k1) ρ = simulate k1 ρ (5.1)
simulate (mirror k2) ρ = simulate k2 ρ (5.2)

as our induction hypotheses, and must prove

simulate (mirror (AND k1 k2)) ρ = simulate (AND k1 k2) ρ.

This is a straightforward consequence of the definition of mirror (sec-
ond clause), the definition of simulate (second clause), and the induc-
tion hypotheses.

Figure 5.1: A proof by hand that mirroring a circuit doesn’t change its behaviour.

1 theorem simulate (mirror c) ρ = simulate c ρ
2 apply (induct c)
3 apply auto
4 done

Figure 5.2: A proof in Isabelle that mirroring a circuit doesn’t change its be-
haviour.

29

3 | optNOT (NOT c) = NOT (optNOT c)
4 | optNOT (AND c1 c2) = AND (optNOT c1) (optNOT c2)
5 | optNOT (OR c1 c2) = OR (optNOT c1) (optNOT c2)
6 | optNOT TRUE = TRUE
7 | optNOT FALSE = FALSE
8 | optNOT (INPUT i) = INPUT i

The optNOT function is, like simulate, defined recursively. The clause on line 2
is the most important one. It says that the result of optimising a circuit of the form
NOT (NOT c) is obtained by discarding the two NOT gates and then optimising
c. The clause on line 3 applies when the circuit takes the form NOT c but doesn’t
match the pattern of the first clause (the clauses are tried in order). It says that the
result of optimising a circuit of this form is obtained by first optimising c (that is,
the circuit with the final NOT gate removed) and then attaching a NOT gate to the
output of the optimised circuit. AND and OR gates are optimised similarly (lines 4
and 5). Once the optimisation reaches the ‘leaves’ of the circuit ‘tree’ (that is,
TRUE, FALSE, and INPUT i), there is nothing more for the optimiser to do.

As an example, let us consider the effect of optNOT on our example circuit4.
Figure 5.3 shows how optNOT is repeatedly applied to smaller and smaller parts of
the original circuit, eventually obtaining a fully optimised circuit.

5.5 Rule induction
Alongside mathematical induction and structural induction, there is a third type
of induction that can be useful, called rule induction. Mathematical induction
exploits the observation that any natural number is obtained by applying the ‘suc-
cessor’ function finitely-many times to ‘zero’. Structural induction exploits the
observation that any instance of a recursively-defined data structure is obtained by
applying the recursive constructors (like AND) of that data structure finitely-many
times to the non-recursive constructors (like TRUE). Rule induction, on the other
hand, exploits the observation that the result of a recursive function, say f, in-
volves finitely-many recursive calls to f. The aim is to prove that some property
of interest holds of the result of f, under the assumption that the property already
holds for any recursive calls to f that the function makes.

For instance, consider the following recursive function

1 fun f :: N⇒ N where
2 f (Suc (Suc n)) = f n + f (Suc n)
3 | f (Suc 0) = 1
4 | f 0 = 1

and suppose we wish to prove that fn ≥ n for all natural numbers n. Structural
induction and mathematical induction are not good fits here, because the definition

30

is not syntax-directed. That is, we do not have a 1-to-1 correspondence between
the constructors of the data structure (Suc and 0) and the clauses of f. In contrast,
both mirror and simulate are syntax-directed, and this is what made the structural
induction proofs so straightforward.

The principle of rule induction for the function f is as follows:

Theorem name: f.induct
Assumptions: ∀k. (P k ∧ P (Suc k))⇒ P (Suc (Suc k))

P (Suc 0)
P (0)

Conclusions: ∀n. P n

The principle says that if we can prove for arbitrary k that if P holds of both
k and k + 1 then it holds of k + 2, and if we can prove that P holds of both 1 and
0, then we can deduce that P holds for all natural numbers.

To prove our desired theorem about f using this principle, it is natural to in-
stantiate P so that P (n) = (fn ≥ n). In fact, this is not quite strong enough, but
if we instantiate P so that P (n) = (fn ≥ n ∧ fn ≥ 1) then the proof will go
through (and our desired theorem follows as an immediate corollary).

5.6 Verifying our optimiser
We now wish to prove that this optimisation is correct. Like with the mirror
transformation before, we must first be precise about what we mean by ‘correct’.
What we cannot say, for instance, is that the optimisation does not change the
circuit at all, which is what the following theorem tries to claim.

theorem optNOT c = c
oops

Indeed, Isabelle is able to contradict that theorem for us even before we have
started a (doomed) effort to prove it, by exhibiting the following simple coun-
terexample.

TRUE

What we can prove, however, is that our optimisation will not change the result
of simulating the circuit, whatever wire valuation we provide.

theorem opt_NOT_is_sound: simulate (optNOT c) ρ = simulate c ρ

31

How can we prove this theorem?
Structural induction is tempting, but is actually not a good fit because optNOT is

not syntax-directed – there are more clauses in the definition of optNOT than there
are constructors for the circuit data structure. Therefore, we turn to rule induc-
tion. The basic observation is that the result of optNOT c is obtained by repeatedly
unfolding the seven clauses that define optNOT, like we saw in Figure 5.3. If we can
show that unfolding each individual clause is correct, then it follows that repeated
unfolding of these clauses is also correct.

Another way to think of this is: we are showing that each clause in the defi-
nition of optNOT is correct, and to do so we can assume that any recursive calls it
contains are already correct. This reasoning is legitimate providing the function
does not contain infinite recursion (and Isabelle checks this when the function was
defined). This assumption is known as the induction hypothesis.

So let us examine each clause in turn. It is easier to begin at the bottom,
because the last three clauses do not contain any recursive calls. Let us prove our
theorem in the case where the result of optNOT c is obtained using the clause on
line 8. That means c must take the form INPUT i for some i. To prove that this
clause is correct, we must prove that

simulate (optNOT (INPUT i)) ρ = simulate (INPUT i) ρ

which is a straighforward consequence of the definition of optNOT. The clauses on
lines 6 and 7 are similarly easy.

Now let us instead suppose that the result of optNOT c is obtained using the
clause on line 5. That means c must take the form OR c1 c2 for some c1 and
c2. To prove that this clause is correct, we must prove that

simulate (optNOT (OR c1 c2)) ρ = simulate (OR c1 c2) ρ (5.3)

under the assumption that the recursive calls on c1 and c2 are already correct.
That is, we can assume the following induction hypotheses:

simulate (optNOT c1) ρ = simulate c1 ρ (5.4)

and
simulate (optNOT c2) ρ = simulate c2 ρ (5.5)

We can prove (5.3) like so:

32

simulate (optNOT (OR c1 c2)) ρ

= {unfolding line 5 of definition of optNOT}
simulate (OR (optNOT c1) (optNOT c2)) ρ

= {unfolding line 3 of definition of simulate}
(simulate (optNOT c1) ρ) ∨ (simulate (optNOT c2) ρ)

= {unfolding (5.4)}
(simulate c1 ρ) ∨ (simulate (optNOT c2) ρ)

= {unfolding (5.5)}
(simulate c1 ρ) ∨ (simulate c2 ρ)

= {folding line 3 of definition of simulate}
simulate (OR c1 c2) ρ

The clauses on lines 3 and 4 are proved similarly. The final clause, on line 2,
requires us to prove

simulate (optNOT (NOT (NOT c))) ρ = simulate c ρ

assuming
simulate (optNOT c) ρ = simulate c ρ

which is a straightforward matter of unfolding definitions. Putting it all together,
we can conclude that the entire optNOT function is correct.

Isabelle can actually handle all of this reasoning with very little assistance.
The entire proof takes just one line.

theorem opt_NOT_is_sound: simulate (optNOT c) ρ = simulate c ρ
by (induct rule: opt_NOT.induct, auto)

The proof instructs Isabelle first to perform rule induction, which leaves us
with seven proof goals – one for each of the clauses of optNOT. Each of these
proof goals is sufficiently straightforward that one application of auto is enough
to dispense with all of them.

To examine the proof in a little more detail, it could be rewritten in the follow-
ing more explicit form.

theorem opt_NOT_is_sound: simulate (optNOT c) ρ = simulate c ρ
apply (induct rule: opt_NOT.induct)
apply auto
done

33

optNOT circuit4

= {unfolding definition of circuit4}
optNOT (AND circuit3 (INPUT 3))

= {unfolding line 4 of definition of optNOT}
AND (optNOT circuit3) (optNOT (INPUT 3))

= {unfolding line 8 of definition of optNOT}
AND (optNOT circuit3) (INPUT 3)}

= {unfolding definition of circuit3}
AND (optNOT (NOT (NOT circuit2))) (INPUT 3)}

= {unfolding line 2 of definition of optNOT}
AND (optNOT circuit2) (INPUT 3)}

= {unfolding definition of circuit2}
AND (optNOT (OR (NOT circuit1) FALSE)) (INPUT 3)}

= {unfolding line 5 of definition of optNOT}
AND (OR (optNOT (NOT circuit1)) (optNOT FALSE)) (INPUT 3)}

= {unfolding line 7 of definition of optNOT}
AND (OR (optNOT (NOT circuit1)) FALSE) (INPUT 3)}

= {unfolding definition of circuit1}
AND (OR (optNOT (NOT (AND (INPUT 1) (INPUT 2)))) FALSE) (INPUT 3)}

= {unfolding line 3 of definition of optNOT}
AND (OR (NOT (optNOT (AND (INPUT 1) (INPUT 2)))) FALSE) (INPUT 3)}

= {unfolding line 4 of definition of optNOT}
AND (OR (NOT (AND (optNOT (INPUT 1)) (optNOT (INPUT 2)))) FALSE) (INPUT 3)}

= {unfolding line 8 of definition of optNOT}
AND (OR (NOT (AND (INPUT 1) (INPUT 2))) FALSE) (INPUT 3)}

Figure 5.3: How our optimisation works on our example circuit4. The ex-
pression on the first line is repeatedly rewritten to an equivalent form using the
definitions of the circuit and of the optNOT function.

34

Bibliography

[1] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,
and S. Winwood. sel4: formal verification of an OS kernel. In ACM Sympo-
sium on Operating Systems Principles (SOSP), 2009.

[2] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens. CakeML: A verified
implementation of ML. In ACM Symp. on Principles of Programming Lan-
guages (POPL), 2014.

[3] X. Leroy. Formal verification of a realistic compiler. Communications of the
ACM, 52(7):107–115, 2009.

[4] A. Lööw, R. Kumar, Y. K. Tan, M. O. Myreen, M. Norrish, O. Abrahamsson,
and A. Fox. Verified compilation on a verified processor. In ACM Conf. on
Programming Language Design and Implementation (PLDI), 2019.

35

