// Dafny coursework tasks // Autumn term, 2022 // // Authors: John Wickerson method countsquares(n:nat) returns (result:nat) ensures result == (n * (n + 1) * (2 * n + 1)) / 6; { var i := 0; result := 0; while i < n invariant 0 <= i <= n; decreases n - i; invariant result == (i * (i + 1) * (2 * i + 1)) / 6; { i := i + 1; result := result + i * i; } } method countsquares2(n:nat) returns (result:nat) ensures result == (n * (n + 1) * (2 * n + 1)) / 6; { var i := n; result := 0; while i > 0 invariant 0 <= i <= n; decreases i; invariant result == ((n * (n + 1) * (2 * n + 1)) / 6) - ((i * (i + 1) * (2 * i + 1)) / 6); { result := result + i * i; i := i - 1; } } predicate sorted(A:array) reads A; { forall m,n :: 0 <= m < n < A.Length ==> A[m] <= A[n] } method binarysearch_between(A:array, v:int, lo:int, hi:int) returns (result:bool) requires sorted(A); requires 0 <= lo <= hi <= A.Length; decreases hi - lo; ensures (exists j :: lo <= j < hi && A[j] == v) <==> result; { if lo == hi { return false; } var mid:int := (lo + hi) / 2; if v == A[mid] { return true; } if v < A[mid] { result := binarysearch_between(A, v, lo, mid); } if v > A[mid] { result := binarysearch_between(A, v, mid+1, hi); } } method binarysearch(A:array, v:int) returns (result:bool) requires sorted(A); ensures (exists j :: 0 <= j < A.Length && A[j] == v) <==> result; { result := binarysearch_between(A, v, 0, A.Length); // call with lo and hi to cover full array } method binarysearch_iter(A:array, v:int) returns (result:bool) requires sorted(A); ensures (exists j :: 0 <= j < A.Length && A[j] == v) <==> result; { result := false; var lo := 0; var hi := A.Length; while lo < hi invariant 0 <= lo <= hi <= A.Length; invariant forall j :: (0 <= j < lo || hi <= j < A.Length) ==> A[j] != v; decreases hi - lo; { var mid := (lo + hi) / 2; if A[mid] > v { hi := mid; } else if A[mid] < v { lo := mid + 1; } else { return true; } } } method partition(A:array, lo:int, hi:int) returns (pivot:int) requires 0 <= lo < hi <= A.Length; ensures 0 <= lo <= pivot < hi <= A.Length; ensures forall k :: (0 <= k < lo || hi <= k < A.Length) ==> old(A[k]) == A[k]; ensures forall k :: lo <= k < pivot ==> A[k] <= A[pivot]; ensures forall k :: pivot <= k < hi ==> A[pivot] <= A[k]; modifies A; { pivot := lo; var i := lo+1; while i < hi invariant 0 <= lo <= pivot < i <= hi invariant forall k :: (0 <= k < lo || hi <= k < A.Length) ==> old(A[k]) == A[k] invariant forall k :: (k==pivot) ==> A[k] == old(A[lo]) invariant forall k :: (lo <= k <= pivot) ==> A[k] <= A[pivot] invariant forall k :: (pivot <= k < i) ==> A[k] >= A[pivot] decreases hi - i { if A[i] < A[pivot] { var j := i-1; var tmp := A[i]; A[i] := A[j]; while pivot < j invariant forall k :: (0 <= k < lo || hi <= k < A.Length) ==> old(A[k]) == A[k] invariant forall k :: (k==pivot) ==> A[k] == old(A[lo]) invariant forall k :: (pivot <= k <= i) ==> A[k] >= A[pivot] invariant forall k :: (lo <= k <= pivot) ==> A[k] <= A[pivot] invariant A[pivot] > tmp decreases j { A[j+1] := A[j]; j := j-1; } A[pivot+1] := A[pivot]; A[pivot] := tmp; pivot := pivot+1; } i := i+1; } } predicate sorted_seq(A:seq) { forall m,n :: 0 <= m < n < |A| ==> A[m] <= A[n] } method quicksort_between(A:array, lo:int, hi:int) requires A.Length == 2; requires 0 <= lo <= hi <= A.Length; ensures forall k :: (0 <= k < lo || hi <= k < A.Length) ==> old(A[k]) == A[k]; // old(A[k]) evaluates to the value of A[k] on entry to the method, so this // checkes that only values in A[lo..hi] can be modified by this method // ensures sorted_seq(A[lo..hi]); modifies A; decreases hi - lo; { if lo+1 >= hi { return; } var pivot := partition(A, lo, hi); assert forall a :: a in A[lo..pivot] ==> a <= A[pivot]; assert forall a :: a in A[pivot..hi] ==> A[pivot] <= a; quicksort_between(A, lo, pivot); // assert sorted_seq(A[lo..pivot]); // assert sorted_seq(A[pivot..hi]); assert forall a :: a in A[lo..pivot] ==> a <= A[pivot]; assert forall a :: a in A[pivot..hi] ==> A[pivot] <= a; quicksort_between(A, pivot+1, hi); // assert sorted_seq(A[lo..pivot]); // assert sorted_seq(A[pivot..hi]); // assert forall a :: a in A[lo..pivot] ==> a <= A[pivot]; // assert forall a :: a in A[pivot..hi] ==> A[pivot] <= a; } method quicksort(A:array) modifies A; requires A.Length == 2; // ensures sorted(A); { quicksort_between(A, 0, A.Length); } method Main() { // var A:array := new int[7] [4,0,1,9,7,1,2]; // print "Before: ", A[0], A[1], A[2], A[3], A[4], A[5], A[6], "\n"; // quicksort(A); // print "After: ", A[0], A[1], A[2], A[3], A[4], A[5], A[6], "\n"; var A:array := new int[2] [1040, -197]; print "Before: ", A[0], " ", A[1], "\n"; quicksort(A); print "After: ", A[0], " ", A[1], "\n"; }