
John Wickerson Hardware & Software Verification 1

[Collatz in Dafny]



John Wickerson & Pete Harrod

Lecture 10: SAT and SMT solving

Hardware & Software 
Verification



John Wickerson Hardware & Software Verification

Automatic proof
• We often rely on automatic provers:


• e.g. in Dafny, to show that invariant P is preserved,


• e.g. in Isabelle methods like by auto.


• How do these automatic provers work?

3



John Wickerson Hardware & Software Verification

SAT queries
• Simple case: proofs about Boolean statements.

4



John Wickerson Hardware & Software Verification

SAT queries
• Simple case: proofs about Boolean statements.


• f  =  (¬(A ∧ ¬B ∧ C) ∨ (C ∨ (B ∧ A)))

5



John Wickerson Hardware & Software Verification

SAT queries
• Simple case: proofs about Boolean statements.


• ¬f  =  ¬(¬(A ∧ ¬B ∧ C) ∨ (C ∨ (B ∧ A)))

6

A B C ¬f
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

A

B

C

¬f

A formula can be VALID, SATISFIABLE, 
UNSATISFIABLE, or INVALID.

always true
sometimes true

always false sometimes false



John Wickerson Hardware & Software Verification

SAT solving
• A simple algorithm:

7

for A in {0, 1}:

  for B in {0, 1}:

    for C in {0, 1}:

      if ¬f(A,B,C) = 1:

        return ("SAT", [A,B,C])

return ("UNSAT")



John Wickerson Hardware & Software Verification

SAT solving
• A cleverer way: use de Morgan's rules to convert the formula 

to conjunctive normal form.

8

A

B

C

¬f



John Wickerson Hardware & Software Verification

SAT solving
• A cleverer way: use de Morgan's rules to convert the formula 

to conjunctive normal form.

9

• It may then become obvious 
that ¬f is UNSAT.

¬f

A

¬B

¬A

¬B
C

¬C

• If not, we can use the Davis–
Putnam algorithm.

Martin Davis 

1928–
Hilary Putnam 

1926–2016



John Wickerson Hardware & Software Verification

The DP method
1. If an OR-gate takes both L and ¬L, delete it.

10

A

¬A



John Wickerson Hardware & Software Verification

The DP method
1. If an OR-gate takes both L and ¬L, delete it.


2. If L is connected directly to the AND-gate, delete it, delete all OR-gates 
that take L, and delete any connections to ¬L. 
(The solution, if it exists, will surely involve setting L=1.)

11

B

¬B

B



John Wickerson Hardware & Software Verification

The DP method
1. If an OR-gate takes both L and ¬L, delete it.


2. If L is connected directly to the AND-gate, delete it, delete all OR-gates 
that take L, and delete any connections to ¬L. 
(The solution, if it exists, will surely involve setting L=1.)


3. If L is unused, delete all OR-gates that take ¬L.  
(The solution, if it exists, will surely involve setting L=0.)

12

A



John Wickerson Hardware & Software Verification

The DP method
1. If an OR-gate takes both L and ¬L, delete it.


2. If L is connected directly to the AND-gate, delete it, delete all OR-gates 
that take L, and delete any connections to ¬L. 
(The solution, if it exists, will surely involve setting L=1.)


3. If L is unused, delete all OR-gates that take ¬L.  
(The solution, if it exists, will surely involve setting L=0.)


4. If any OR-gate has no inputs, the formula is false.


5. If the AND-gate has no inputs, the formula is true.


6. Pick a literal L and repeat the above for the cases L=0 and L=1.

13



John Wickerson Hardware & Software Verification

DP example 1

14

A

B

¬A
¬C

B

¬C

A=0

B

C=0

B=1

Satisfiable, e.g.  
when A=0, B=1, C=0



John Wickerson Hardware & Software Verification

DP example 2
15

¬B
C

¬C
A

¬C
B

¬A
B
C

A
B

¬A
¬B

A=1

¬B
C

¬C
B

B
C

¬B

B=0

¬C

C

Unsatisfiable

A=0

¬B
C

¬C
¬C

B

B

C=0

¬B

B

Unsatisfiable



John Wickerson Hardware & Software Verification

Towards SMT solving
• We can now prove basic Boolean formulas. But what about 

proving something like A × (B + C) = A × B + A × C?


• If these are 32-bit integers, we could make this a SAT problem 
by treating each variable as 32 Boolean variables and encoding 
the rules of Boolean arithmetic. 


• Or we can move up to SMT: satisfiability modulo theories.

16

x - y ≤ 2

z - x ≤ -3

y - z ≤ -1

A

C

B



John Wickerson Hardware & Software Verification

Some theories
• Equality and uninterpreted functions, which knows  

that you can't have x=y and y=z without x=z, and  
that you can't have x=y without f(x)=f(y).


• Difference logic, where statements take the form x - y ≤ c.


• Presburger arithmetic, which allows statements about 
naturals containing +, 0, 1, and =.

17

Mojżesz Presburger 
1904–c.1943



John Wickerson Hardware & Software Verification

Some theories
• Equality and uninterpreted functions, which knows  

that you can't have x=y and y=z without x=z, and  
that you can't have x=y without f(x)=f(y).


• Difference logic, where statements take the form x - y ≤ c.


• Presburger arithmetic, which allows statements about 
naturals containing +, 0, 1, and =.


• Non-linear arithmetic, which allows queries like: 

• Theory of arrays, theory of bit-vectors, etc.

18



John Wickerson Hardware & Software Verification

Decidability of Presburger

19

x + y = z

0

( )0
0
0 ( )0

1
1 ( )1

0
1 ( )1

1
0

( )0
0
1

( )1
0
0 ( )0

1
0 ( )1

1
1

1 2 4 8 16 32 64

x = 0 1 0 0 1 0 0
y = 0 1 0 1 0 1 0
z = 0 0 1 1 1 1 0

Julius Richard Büchi 
1924–1984



John Wickerson Hardware & Software Verification

Adding multiplication
• If we add multiplication, we can write a statement 

representing the Collatz conjecture: does there exist an infinite 
sequence of positive integers x0, x1, x2, ... such that  
 
    2 × xi+1 = xi         if xi is even  
    xi+1 = 3 × xi + 1   if xi is odd


• So if arithmetic with multiplication were decidable, we could 
solve the Collatz conjecture automatically! 

20



John Wickerson Hardware & Software Verification

Automatic proof
• We often rely on automatic provers:


• e.g. in Dafny, to show that invariant P is preserved,


• e.g. in Isabelle methods like by auto.


• How do these automatic provers work?

21


