
John Wickerson & Pete Harrod

Lecture 5: Isabelle

Hardware & Software 
Verification



John Wickerson Hardware & Software Verification

Lecture Outline
• Proving simple theorems by hand.


• Proving simple theorems using Isabelle.


• Next lecture: proving the correctness of a logic synthesiser.

2



John Wickerson Hardware & Software Verification

First proof
• Theorem. √2 is irrational.

3



John Wickerson Hardware & Software Verification

Isabelle
• Invented by Lawrence Paulson around 

1986. Developed ever since at the 
University of Cambridge and at 
TU München.


• Has been used for large mathematical 
proofs, such as the Kepler conjecture.


• Has been used to build a verified operating 
system! The OS implementation is about 
7.5k lines of C, the proof has about 200k 
steps, and it uncovered hundreds of bugs 
in the initial implementation. 

4



John Wickerson Hardware & Software Verification 5



John Wickerson Hardware & Software Verification

Observations
• Use sorry to skip a proof.


• Use find_theorems to search Isabelle's database of theorems.


• CTRL+click (or CMD+click) on a name to jump to its definition.


• Use thm to print out a theorem. Use thm[of x] or thm[OF 
f] to print out an instantiated theorem.


• Refer to facts using `backticks` or by naming them.


• Use try to invoke the Sledgehammer.

6



John Wickerson Hardware & Software Verification

Second proof
• Theorem. There is no greatest even number.


• Proof. To show that the greatest number does not exist, we 
shall assume that it does, and deduce a contradiction. To this 
end, suppose there is a greatest even number, and call it n. But 
if n is even, then so is n+2, which is greater than n. This 
contradicts the assumption that n is the greatest even number. 
Therefore, the greatest even number does not exist.

7



John Wickerson Hardware & Software Verification 8



John Wickerson Hardware & Software Verification

Observations
• Use moreover..ultimately to avoid labelling each fact.


• Isabelle proofs can use the "structured" style or the 
"procedural" style.


• The procedural style offers various low-level commands like 
defer and prefer, and low-level methods like thin_tac 
and rename_tac.


• There are a range of automated methods: auto, simp, 
clarify, clarsimp, blast, etc.

9



John Wickerson Hardware & Software Verification

Some constructions
• fix <variable name>

• assume <new fact>


• have <new fact> by <method>

• from this have <new fact> by <method>

• with <name of old fact> have <new fact> by <method>

• have <new fact> using <name of old fact> by <method>

• show <thesis> by <method>

• from this show <thesis> by <method>

• moreover..ultimately

10

hence

thus



John Wickerson Hardware & Software Verification

• This is the difference between making a judgement about a logical 
statement and the logical statement itself. 


• Examples:


• For every x, if it is the case that even(x) holds and it is the case that 
odd(x) holds then it is the case that x=0 holds.


• For every x, if it is the case that even(x) ∧ odd(x) holds then it is the 
case that x=0 holds.


• For every x, it is the case that (even(x) ∧ odd(x)) → x=0 holds.


• It is the case that ∀x. (even(x) ∧ odd(x)) → x=0 holds.

Meta vs Object logic

11



John Wickerson Hardware & Software Verification

• This is the difference between making a judgement about a logical 
statement and the logical statement itself. 


• Examples:


• For every x, if it is the case that even(x) holds and it is the case that 
odd(x) holds then it is the case that x=0 holds.


• For every x, if it is the case that even(x) ∧ odd(x) holds then it is the 
case that x=0 holds.


• For every x, it is the case that (even(x) ∧ odd(x)) → x=0 holds.


• It is the case that ∀x. (even(x) ∧ odd(x)) → x=0 holds.

Meta vs Object logic

12

• ⋀x. ⟦even(x); odd(x)⟧ ⇒ x=0

• ⋀x. even(x) ∧ odd(x) ⇒ x=0

• ⋀x. even(x) ∧ odd(x) → x=0

• ∀x. (even(x) ∧ odd(x)) → x=0 



John Wickerson Hardware & Software Verification

Proof by induction
• Suppose we want to show that property P holds  

for all natural numbers.


• To do this, it suffices to prove two things:


• P holds for 0 (this is called the base  
case), and


• for all k, if P holds for k, then P also holds  
for k+1 (this is called the inductive step).

13

0

1

2

3

4

5

6

7

8

9

P ✔︎

P ✔︎

P ✔︎

P ✔︎

P ✔︎

P ✔︎

P ✔︎

P ✔︎

P ✔︎



John Wickerson Hardware & Software Verification

Triangle numbers
• triangle(n) = if n=0 then 0 else n + triangle(n-1)


• Theorem. triangle(n) = (n+1)n/2.


• Proof. We proceed by mathematical induction.


• Base case. We have triangle(0) = (0+1)0/2 = 0.


• Inductive step. Pick arbitrary k and assume 
triangle(k) = (k+1)k/2. It follows that 
triangle(k+1) = k+1 + triangle(k) =  
k+1 + (k+1)k/2 = (k+2)(k+1)/2, as required.

14



John Wickerson Hardware & Software Verification 15



John Wickerson Hardware & Software Verification

Tetrahedral numbers
• tet(n) = if n=0 then 0 else triangle(n) + tet(n-1)


• Theorem. tet(n) = (n+2)(n+1)n/6.


• Proof. We proceed by mathematical induction.


• Base case. We have tet(0) = (0+2)(0+1)0/6 = 0.


• Inductive step. Pick arbitrary k and assume 
tet(k) = (k+2)(k+1)k/6. With the help of the 
previous theorem about triangle numbers, it 
follows that tet(k+1) = (k+3)(k+2)(k+1)/6. 

16



John Wickerson Hardware & Software Verification 17



John Wickerson Hardware & Software Verification

Observations
• Use also..finally for chains of equational reasoning.


• Isabelle will provide a bare-bones induction proof for you 
when you type proof (induct ...).


• Use { braces } to delimit the scope of a local assumption.

18



John Wickerson Hardware & Software Verification

Summary
• This lecture: how to conduct some basic proofs in Isabelle.


• Next lecture: How to implement a (small) logic synthesiser in 
Isabelle and verify that it is correct.

19


