
Isabelle coursework exercises

John Wickerson

Autumn term 2019

Tasks are largely independent from each other, and are arranged in roughly
increasing order of difficulty. Tasks labelled (?) are expected to be quite straight-
forward. Tasks labelled (??) should be manageable but may require quite a bit
of thinking, and it may be necessary to consult additional sources of informa-
tion, such as the Isabelle manual and Stack Overflow. Tasks labelled (???) are
challenging and open-ended. It is not expected that many students will complete
these, but partial credit will be given to partial answers. The task labelled (????)
is very hard, but again, some credit will be given to students who show they have
given it some thought.

Submission process. You are expected to produce a single Isabelle theory
file called YourName.thy. This file should contain all of the definitions and
proofs for all of the tasks below that you have attempted. You are not ex-
pected to complete all tasks. You are expected, however, to provide detailed
annotations throughout your file (in the form of (*comments*)) that demon-
strate the extent to which you have understood the automated theorem proving
process.

Task 1 (?) Prove that 2
√
2 is irrational.

Task 2 (??) Here are the first few L numbers.

L(0) 0
L(1) 1
L(2) 3

L(3) 5

L(4) 7

1



Encode in Isabelle the following recursive function for calculating L num-
bers:

L(n) =

{
n if 0 ≤ n ≤ 1

2 + L(n− 1) if 2 ≤ n

Give a closed form for L(n). Prove in Isabelle that your closed form and
the recursive definition coincide for all n ≥ 0.

Task 3 (???) Below are the first few pyramidal numbers. Pyramidal number n
(written py(n)) is the number of spheres stacked in a pyramid whose base
is a square with sides of length n.

py(0) 0
py(1) 1
py(2) 5
py(3) 14
py(4) 30

Encode in Isabelle the following recursive function for calculating pyrami-
dal numbers:

py(n) =

{
0 if n = 0

n2 + py(n− 1) if 1 ≤ n

Here is a closed form for pyramidal numbers:

py(n) =
(2n+ 1)(n+ 1)n

6

Prove in Isabelle that the recursive definition and the closed form coincide
for all n ≥ 0.

Task 4 (?) Write a function that checks whether a circuit contains two consecu-
tive NOT gates. Use this function to state and prove a theorem that whenever
optNOT is applied to a circuit, the resultant circuit never contains two consec-
utive NOT gates.

Task 5 (?) State and prove a theorem that once optNOT has been applied to a cir-
cuit, applying it again has no effect. (We say that optNOT is idempotent.)

2



can be replaced with

can be replaced with

Table 1: Optimising a circuit according to De Morgan’s laws

Task 6 (??) Write a function called optDM that optimises a circuit using De Mor-
gan’s laws, as shown in Table 1. Prove that your optimisation is sound,
using the following theorem.

theorem simulate (optDM c) ρ = simulate c ρ

Is your optimisation idempotent?

Task 7 (?) Prove that it is sound to apply both of these optimisations successively
to any circuit.

Task 8 (??) Let us now consider the effect of these optimisations on other prop-
erties of a circuit. The following function calculates the area of a circuit, by
counting each NOT, OR, and AND gate as having an area of 1, and constants
and inputs as taking up no area.

1 fun area :: circuit ⇒ nat where
2 area (NOT c) = 1 + area c
3 | area (AND c1 c2) = 1 + area c1 + area c2
4 | area (OR c1 c2) = 1 + area c1 + area c2
5 | area _ = 0

State and prove theorems that optNOT and optDM never increase the area of a
circuit.

Task 9 (??) Define a function that calculates the delay of a circuit. We shall say
that the delay of circuit is the length of the longest path from the circuit’s
output to one of its inputs. Prove that optNOT and optDM never increase the
delay of a circuit.

Task 10 (???) Define a function that performs constant folding. Wherever it sees
a gate with TRUE or FALSE as one of its inputs, it should try to replace

3



the gate with TRUE, FALSE, or the other input, depending on the gate.
For instance, it should replace NOT FALSE with TRUE, it should replace
AND FALSE c with FALSE, and it should replace OR c FALSE with c.
Prove that constant folding is sound, and that it never increases the area
or delay of a circuit. Also, prove that if constant folding is applied to a
circuit that has no inputs, the circuit thus obtained must be TRUE or FALSE.

Task 11 (????) So far we have only considered circuits with no fan-out, i.e. cir-
cuits with only a single output wire. This is not very realistic. Devise a data
structure that allows circuits with multiple outputs to be represented. Define
a function that optimises these circuits by removing gates that do not lead,
directly or indirectly, to an output. (Such gates can be considered ‘dead’,
as they cannot affect the behaviour of a circuit.) Prove that removing dead
gates is sound.

4


