
John Wickerson Hardware & Software Verification 1

[Collatz in Dafny]

John Wickerson & Pete Harrod

Lecture 10: SAT and SMT solving

Hardware & Software
Verification

John Wickerson Hardware & Software Verification

Automatic proof

3

John Wickerson Hardware & Software Verification

Automatic proof
• We often rely on automatic provers:

3

John Wickerson Hardware & Software Verification

Automatic proof
• We often rely on automatic provers:

• e.g. in Dafny, to show that invariant P is preserved,

3

John Wickerson Hardware & Software Verification

Automatic proof
• We often rely on automatic provers:

• e.g. in Dafny, to show that invariant P is preserved,

• e.g. in Isabelle methods like by auto.

3

John Wickerson Hardware & Software Verification

Automatic proof
• We often rely on automatic provers:

• e.g. in Dafny, to show that invariant P is preserved,

• e.g. in Isabelle methods like by auto.

• How do these automatic provers work?

3

John Wickerson Hardware & Software Verification

SAT queries
• Simple case: proofs about Boolean statements.

4

John Wickerson Hardware & Software Verification

SAT queries
• Simple case: proofs about Boolean statements.

• f = ((A ∧ ¬B ∧ C) ⇒ (C ∨ (B ∧ A)))

5

John Wickerson Hardware & Software Verification

SAT queries
• Simple case: proofs about Boolean statements.

• f = (¬(A ∧ ¬B ∧ C) ∨ (C ∨ (B ∧ A)))

6

John Wickerson Hardware & Software Verification

SAT queries
• Simple case: proofs about Boolean statements.

• ¬f = ¬(¬(A ∧ ¬B ∧ C) ∨ (C ∨ (B ∧ A)))

7

John Wickerson Hardware & Software Verification

SAT queries
• Simple case: proofs about Boolean statements.

• ¬f = ¬(¬(A ∧ ¬B ∧ C) ∨ (C ∨ (B ∧ A)))

7

A

B

C

¬f

John Wickerson Hardware & Software Verification

SAT queries
• Simple case: proofs about Boolean statements.

• ¬f = ¬(¬(A ∧ ¬B ∧ C) ∨ (C ∨ (B ∧ A)))

7

A B C ¬f
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

A

B

C

¬f

John Wickerson Hardware & Software Verification

SAT queries
• Simple case: proofs about Boolean statements.

• ¬f = ¬(¬(A ∧ ¬B ∧ C) ∨ (C ∨ (B ∧ A)))

7

A B C ¬f
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

A

B

C

¬f

A formula can be VALID, SATISFIABLE,
UNSATISFIABLE, or INVALID.

John Wickerson Hardware & Software Verification

SAT queries
• Simple case: proofs about Boolean statements.

• ¬f = ¬(¬(A ∧ ¬B ∧ C) ∨ (C ∨ (B ∧ A)))

7

A B C ¬f
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

A

B

C

¬f

A formula can be VALID, SATISFIABLE,
UNSATISFIABLE, or INVALID.

always true

John Wickerson Hardware & Software Verification

SAT queries
• Simple case: proofs about Boolean statements.

• ¬f = ¬(¬(A ∧ ¬B ∧ C) ∨ (C ∨ (B ∧ A)))

7

A B C ¬f
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

A

B

C

¬f

A formula can be VALID, SATISFIABLE,
UNSATISFIABLE, or INVALID.

always true
sometimes true

John Wickerson Hardware & Software Verification

SAT queries
• Simple case: proofs about Boolean statements.

• ¬f = ¬(¬(A ∧ ¬B ∧ C) ∨ (C ∨ (B ∧ A)))

7

A B C ¬f
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

A

B

C

¬f

A formula can be VALID, SATISFIABLE,
UNSATISFIABLE, or INVALID.

always true
sometimes true

always false

John Wickerson Hardware & Software Verification

SAT queries
• Simple case: proofs about Boolean statements.

• ¬f = ¬(¬(A ∧ ¬B ∧ C) ∨ (C ∨ (B ∧ A)))

7

A B C ¬f
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

A

B

C

¬f

A formula can be VALID, SATISFIABLE,
UNSATISFIABLE, or INVALID.

always true
sometimes true

always false sometimes false

John Wickerson Hardware & Software Verification

SAT solving
• A simple algorithm:

8

for A in {0, 1}:
 for B in {0, 1}:
 for C in {0, 1}:
 if f(A,B,C) = 1:
 return ("SAT", [A, B, C])
return ("UNSAT")

John Wickerson Hardware & Software Verification

SAT solving

9

John Wickerson Hardware & Software Verification

SAT solving
• A cleverer way: use de Morgan's rules to convert the formula

to conjunctive normal form.

9

John Wickerson Hardware & Software Verification

SAT solving
• A cleverer way: use de Morgan's rules to convert the formula

to conjunctive normal form.

9

¬f

A

¬B

¬A

¬B
C

¬C

John Wickerson Hardware & Software Verification

SAT solving
• A cleverer way: use de Morgan's rules to convert the formula

to conjunctive normal form.

9

• It may then become obvious
that the formula is UNSAT.

¬f

A

¬B

¬A

¬B
C

¬C

John Wickerson Hardware & Software Verification

SAT solving
• A cleverer way: use de Morgan's rules to convert the formula

to conjunctive normal form.

9

• It may then become obvious
that the formula is UNSAT.

¬f

A

¬B

¬A

¬B
C

¬C

John Wickerson Hardware & Software Verification

SAT solving
• A cleverer way: use de Morgan's rules to convert the formula

to conjunctive normal form.

9

• It may then become obvious
that the formula is UNSAT.

¬f

A

¬B

¬A

¬B
C

¬C

• If not, we can use the Davis–
Putnam algorithm…

John Wickerson Hardware & Software Verification

SAT solving
• A cleverer way: use de Morgan's rules to convert the formula

to conjunctive normal form.

9

• It may then become obvious
that the formula is UNSAT.

¬f

A

¬B

¬A

¬B
C

¬C

• If not, we can use the Davis–
Putnam algorithm…

Martin Davis 
1928–

John Wickerson Hardware & Software Verification

SAT solving
• A cleverer way: use de Morgan's rules to convert the formula

to conjunctive normal form.

9

• It may then become obvious
that the formula is UNSAT.

¬f

A

¬B

¬A

¬B
C

¬C

• If not, we can use the Davis–
Putnam algorithm…

Martin Davis 
1928–

Hilary Putnam 
1926–2016

John Wickerson Hardware & Software Verification

The DP method

10

John Wickerson Hardware & Software Verification

The DP method
1. If an OR-gate takes both L and ¬L, delete it.

10

John Wickerson Hardware & Software Verification

The DP method
1. If an OR-gate takes both L and ¬L, delete it.

10

A

¬A

John Wickerson Hardware & Software Verification

The DP method
1. If an OR-gate takes both L and ¬L, delete it.

10

A

¬A

John Wickerson Hardware & Software Verification

The DP method
1. If an OR-gate takes both L and ¬L, delete it.

2. If L is connected directly to the AND-gate, delete it, delete all OR-gates
that take L, and delete any connections to ¬L.  
(The solution, if it exists, will surely involve setting L=1.)

11

B

¬B

B

John Wickerson Hardware & Software Verification

The DP method
1. If an OR-gate takes both L and ¬L, delete it.

2. If L is connected directly to the AND-gate, delete it, delete all OR-gates
that take L, and delete any connections to ¬L.  
(The solution, if it exists, will surely involve setting L=1.)

11

B

¬B

B

John Wickerson Hardware & Software Verification

The DP method
1. If an OR-gate takes both L and ¬L, delete it.

2. If L is connected directly to the AND-gate, delete it, delete all OR-gates
that take L, and delete any connections to ¬L.  
(The solution, if it exists, will surely involve setting L=1.)

3. If L is unused, delete all OR-gates that take ¬L.  
(The solution, if it exists, will surely involve setting L=0.)

12

John Wickerson Hardware & Software Verification

The DP method
1. If an OR-gate takes both L and ¬L, delete it.

2. If L is connected directly to the AND-gate, delete it, delete all OR-gates
that take L, and delete any connections to ¬L.  
(The solution, if it exists, will surely involve setting L=1.)

3. If L is unused, delete all OR-gates that take ¬L.  
(The solution, if it exists, will surely involve setting L=0.)

12

A

John Wickerson Hardware & Software Verification

The DP method
1. If an OR-gate takes both L and ¬L, delete it.

2. If L is connected directly to the AND-gate, delete it, delete all OR-gates
that take L, and delete any connections to ¬L.  
(The solution, if it exists, will surely involve setting L=1.)

3. If L is unused, delete all OR-gates that take ¬L.  
(The solution, if it exists, will surely involve setting L=0.)

12

A

John Wickerson Hardware & Software Verification

The DP method
1. If an OR-gate takes both L and ¬L, delete it.

2. If L is connected directly to the AND-gate, delete it, delete all OR-gates
that take L, and delete any connections to ¬L.  
(The solution, if it exists, will surely involve setting L=1.)

3. If L is unused, delete all OR-gates that take ¬L.  
(The solution, if it exists, will surely involve setting L=0.)

4. If any OR-gate has no inputs, the formula is false.

13

John Wickerson Hardware & Software Verification

The DP method
1. If an OR-gate takes both L and ¬L, delete it.

2. If L is connected directly to the AND-gate, delete it, delete all OR-gates
that take L, and delete any connections to ¬L.  
(The solution, if it exists, will surely involve setting L=1.)

3. If L is unused, delete all OR-gates that take ¬L.  
(The solution, if it exists, will surely involve setting L=0.)

4. If any OR-gate has no inputs, the formula is false.

5. If the AND-gate has no inputs, the formula is true.

13

John Wickerson Hardware & Software Verification

The DP method
1. If an OR-gate takes both L and ¬L, delete it.

2. If L is connected directly to the AND-gate, delete it, delete all OR-gates
that take L, and delete any connections to ¬L.  
(The solution, if it exists, will surely involve setting L=1.)

3. If L is unused, delete all OR-gates that take ¬L.  
(The solution, if it exists, will surely involve setting L=0.)

4. If any OR-gate has no inputs, the formula is false.

5. If the AND-gate has no inputs, the formula is true.

6. Pick a literal L and repeat the above for the cases L=0 and L=1.

13

John Wickerson Hardware & Software Verification

DP example 1

14

John Wickerson Hardware & Software Verification

DP example 1

14

A

B

¬A
¬C

John Wickerson Hardware & Software Verification

DP example 1

14

A

B

¬A
¬C

B

¬C

A=0

John Wickerson Hardware & Software Verification

DP example 1

14

A

B

¬A
¬C

B

¬C

A=0

B

C=0

John Wickerson Hardware & Software Verification

DP example 1

14

A

B

¬A
¬C

B

¬C

A=0

B

C=0

B=1

John Wickerson Hardware & Software Verification

DP example 1

14

A

B

¬A
¬C

B

¬C

A=0

B

C=0

B=1

Satisfiable, e.g.  
when A=0, B=1, C=0

John Wickerson Hardware & Software Verification

DP example 2
15

John Wickerson Hardware & Software Verification

DP example 2
15

¬B
C

¬C
A

¬C
B

¬A
B
C

A
B

¬A
¬B

John Wickerson Hardware & Software Verification

DP example 2
15

¬B
C

¬C
A

¬C
B

¬A
B
C

A
B

¬A
¬B

A=1

¬B
C

¬C
B

B
C

¬B

John Wickerson Hardware & Software Verification

DP example 2
15

¬B
C

¬C
A

¬C
B

¬A
B
C

A
B

¬A
¬B

A=1

¬B
C

¬C
B

B
C

¬B

B=0

¬C

C

John Wickerson Hardware & Software Verification

DP example 2
15

¬B
C

¬C
A

¬C
B

¬A
B
C

A
B

¬A
¬B

A=1

¬B
C

¬C
B

B
C

¬B

B=0

¬C

C

Unsatisfiable

John Wickerson Hardware & Software Verification

DP example 2
15

¬B
C

¬C
A

¬C
B

¬A
B
C

A
B

¬A
¬B

A=1

¬B
C

¬C
B

B
C

¬B

B=0

¬C

C

Unsatisfiable

A=0

¬B
C

¬C
¬C

B

B

John Wickerson Hardware & Software Verification

DP example 2
15

¬B
C

¬C
A

¬C
B

¬A
B
C

A
B

¬A
¬B

A=1

¬B
C

¬C
B

B
C

¬B

B=0

¬C

C

Unsatisfiable

A=0

¬B
C

¬C
¬C

B

B

C=0

¬B

B

John Wickerson Hardware & Software Verification

DP example 2
15

¬B
C

¬C
A

¬C
B

¬A
B
C

A
B

¬A
¬B

A=1

¬B
C

¬C
B

B
C

¬B

B=0

¬C

C

Unsatisfiable

A=0

¬B
C

¬C
¬C

B

B

C=0

¬B

B

Unsatisfiable

John Wickerson Hardware & Software Verification

Towards SMT solving

16

John Wickerson Hardware & Software Verification

Towards SMT solving
• We can now prove basic Boolean formulas. But what about

proving something like A × (B + C) = A × B + A × C?

16

John Wickerson Hardware & Software Verification

Towards SMT solving
• We can now prove basic Boolean formulas. But what about

proving something like A × (B + C) = A × B + A × C?

• If these are 32-bit integers, we could make this a SAT problem
by treating each variable as 32 Boolean variables and encoding
the rules of Boolean arithmetic.

16

John Wickerson Hardware & Software Verification

Towards SMT solving
• We can now prove basic Boolean formulas. But what about

proving something like A × (B + C) = A × B + A × C?

• If these are 32-bit integers, we could make this a SAT problem
by treating each variable as 32 Boolean variables and encoding
the rules of Boolean arithmetic.

• Or we can move up to SMT: satisfiability modulo theories.

16

John Wickerson Hardware & Software Verification

Towards SMT solving
• We can now prove basic Boolean formulas. But what about

proving something like A × (B + C) = A × B + A × C?

• If these are 32-bit integers, we could make this a SAT problem
by treating each variable as 32 Boolean variables and encoding
the rules of Boolean arithmetic.

• Or we can move up to SMT: satisfiability modulo theories.

16

A

C

B

John Wickerson Hardware & Software Verification

Towards SMT solving
• We can now prove basic Boolean formulas. But what about

proving something like A × (B + C) = A × B + A × C?

• If these are 32-bit integers, we could make this a SAT problem
by treating each variable as 32 Boolean variables and encoding
the rules of Boolean arithmetic.

• Or we can move up to SMT: satisfiability modulo theories.

16

x - y ≤ 2

z - x ≤ -3

y - z ≤ -1

A

C

B

John Wickerson Hardware & Software Verification

Some theories

17

John Wickerson Hardware & Software Verification

Some theories
• Equality and uninterpreted functions, which knows  

that you can't have x=y and y=z without x=z, and  
that you can't have x=y without f(x)=f(y).

17

John Wickerson Hardware & Software Verification

Some theories
• Equality and uninterpreted functions, which knows  

that you can't have x=y and y=z without x=z, and  
that you can't have x=y without f(x)=f(y).

• Difference logic, where statements take the form x - y ≤ c.

17

John Wickerson Hardware & Software Verification

Some theories
• Equality and uninterpreted functions, which knows  

that you can't have x=y and y=z without x=z, and  
that you can't have x=y without f(x)=f(y).

• Difference logic, where statements take the form x - y ≤ c.

• Presburger arithmetic, which allows statements about
integers containing +, -, 0, 1, and =.

17

John Wickerson Hardware & Software Verification

Some theories
• Equality and uninterpreted functions, which knows  

that you can't have x=y and y=z without x=z, and  
that you can't have x=y without f(x)=f(y).

• Difference logic, where statements take the form x - y ≤ c.

• Presburger arithmetic, which allows statements about
integers containing +, -, 0, 1, and =.

17

Mojżesz Presburger 
1904–c.1943

John Wickerson Hardware & Software Verification

Some theories
• Equality and uninterpreted functions, which knows  

that you can't have x=y and y=z without x=z, and  
that you can't have x=y without f(x)=f(y).

• Difference logic, where statements take the form x - y ≤ c.

• Presburger arithmetic, which allows statements about
integers containing +, -, 0, 1, and =.

17

1. ¬ (x + 1 = 0)
2. x + 1 = y + 1 ⇒ x = y
3. x + 0 = x
4. x + (y + 1) = (x + y) + 1
5. (P(0) ∧ (∀x. P(x) ⇒ P(x+1))) ⇒ ∀y. P(y) (for any P)

Mojżesz Presburger 
1904–c.1943

John Wickerson Hardware & Software Verification

Some theories
• Equality and uninterpreted functions, which knows  

that you can't have x=y and y=z without x=z, and  
that you can't have x=y without f(x)=f(y).

• Difference logic, where statements take the form x - y ≤ c.

• Presburger arithmetic, which allows statements about
integers containing +, -, 0, 1, and =.

• Non-linear arithmetic, which allows queries like:  

18

John Wickerson Hardware & Software Verification

Some theories
• Equality and uninterpreted functions, which knows  

that you can't have x=y and y=z without x=z, and  
that you can't have x=y without f(x)=f(y).

• Difference logic, where statements take the form x - y ≤ c.

• Presburger arithmetic, which allows statements about
integers containing +, -, 0, 1, and =.

• Non-linear arithmetic, which allows queries like:  

• Theory of arrays, theory of bit-vectors, etc.

18

John Wickerson Hardware & Software Verification

Decidability of Presburger

19

John Wickerson Hardware & Software Verification

Decidability of Presburger

19

x + y = z

John Wickerson Hardware & Software Verification

Decidability of Presburger

19

x + y = z
1 2 4 8 16 32 64

x = 0 1 0 0 1 0 0
y = 0 1 0 1 0 1 0
z = 0 0 1 1 1 1 0

John Wickerson Hardware & Software Verification

Decidability of Presburger

19

x + y = z

0

()0
0
0 ()0

1
1 ()1

0
1 ()1

1
0

()0
0
1

()1
0
0 ()0

1
0 ()1

1
1

1 2 4 8 16 32 64

x = 0 1 0 0 1 0 0
y = 0 1 0 1 0 1 0
z = 0 0 1 1 1 1 0

John Wickerson Hardware & Software Verification

Decidability of Presburger

19

x + y = z

0

()0
0
0 ()0

1
1 ()1

0
1 ()1

1
0

()0
0
1

()1
0
0 ()0

1
0 ()1

1
1

1 2 4 8 16 32 64

x = 0 1 0 0 1 0 0
y = 0 1 0 1 0 1 0
z = 0 0 1 1 1 1 0

Julius Richard Büchi 
1924–1984

John Wickerson Hardware & Software Verification

Adding multiplication

20

1. ¬ (x + 1 = 0)
2. x + 1 = y + 1 ⇒ x = y
3. x + 0 = x
4. x + (y + 1) = (x + y) + 1
5. x × 0 = 0
6. x × (y + 1) = x × y + x
7. (P(0) ∧ (∀x. P(x) ⇒ P(x+1))) ⇒ ∀y. P(y) (for any P)

John Wickerson Hardware & Software Verification

Adding multiplication

20

1. ¬ (x + 1 = 0)
2. x + 1 = y + 1 ⇒ x = y
3. x + 0 = x
4. x + (y + 1) = (x + y) + 1
5. x × 0 = 0
6. x × (y + 1) = x × y + x
7. (P(0) ∧ (∀x. P(x) ⇒ P(x+1))) ⇒ ∀y. P(y) (for any P)

Giuseppe Peano
1858–1932

John Wickerson Hardware & Software Verification

Undecidability of Peano

21

John Wickerson Hardware & Software Verification

Undecidability of Peano
• Now we have multiplication, we can write a statement

representing the Collatz conjecture: does there exist an infinite
sequence of positive integers x0, x1, x2, … such that  
 
 2 × xi+1 = xi if xi is even  
 xi+1 = 3 × xi + 1 if xi is odd

21

John Wickerson Hardware & Software Verification

Undecidability of Peano
• Now we have multiplication, we can write a statement

representing the Collatz conjecture: does there exist an infinite
sequence of positive integers x0, x1, x2, … such that  
 
 2 × xi+1 = xi if xi is even  
 xi+1 = 3 × xi + 1 if xi is odd

• So if arithmetic with multiplication were decidable, we could
solve the Collatz conjecture automatically!

21

John Wickerson Hardware & Software Verification

Undecidability of Peano

22

John Wickerson Hardware & Software Verification

Undecidability of Peano
• Suppose I have an algorithm that can take an arithmetic

statement and tell me whether it is true or not.

22

John Wickerson Hardware & Software Verification

Undecidability of Peano
• Suppose I have an algorithm that can take an arithmetic

statement and tell me whether it is true or not.

• The Halting Problem can be encoded as a statement about
arithmetic.

22

John Wickerson Hardware & Software Verification

Undecidability of Peano
• Suppose I have an algorithm that can take an arithmetic

statement and tell me whether it is true or not.

• The Halting Problem can be encoded as a statement about
arithmetic.

• So I can use my algorithm to solve the Halting Problem.

22

John Wickerson Hardware & Software Verification

Undecidability of Peano
• Suppose I have an algorithm that can take an arithmetic

statement and tell me whether it is true or not.

• The Halting Problem can be encoded as a statement about
arithmetic.

• So I can use my algorithm to solve the Halting Problem.

• But it is impossible to write an algorithm to solve the Halting
Problem!

22

John Wickerson Hardware & Software Verification

Undecidability of Peano
• Suppose I have an algorithm that can take an arithmetic

statement and tell me whether it is true or not.

• The Halting Problem can be encoded as a statement about
arithmetic.

• So I can use my algorithm to solve the Halting Problem.

• But it is impossible to write an algorithm to solve the Halting
Problem!

• So it must also be impossible to write an algorithm to decide
whether arithmetic statements are true or not.

22

John Wickerson Hardware & Software Verification

Aside: Halting Problem

23

John Wickerson Hardware & Software Verification

Aside: Halting Problem
• Task. Write a program halts with the following declaration: 
 
int halts(char *P, char *D);  
 
If the program represented by the string P always terminates
when run on the input string D, then halts should return 1.
Otherwise it should return 0.

23

John Wickerson Hardware & Software Verification

Aside: Halting Problem
• Task. Write a program halts with the following declaration: 
 
int halts(char *P, char *D);  
 
If the program represented by the string P always terminates
when run on the input string D, then halts should return 1.
Otherwise it should return 0.

• Examples:

23

John Wickerson Hardware & Software Verification

Aside: Halting Problem
• Task. Write a program halts with the following declaration: 
 
int halts(char *P, char *D);  
 
If the program represented by the string P always terminates
when run on the input string D, then halts should return 1.
Otherwise it should return 0.

• Examples:

23

S1 = "int s1(char *D) {  
 while(1);
 }"

John Wickerson Hardware & Software Verification

Aside: Halting Problem
• Task. Write a program halts with the following declaration: 
 
int halts(char *P, char *D);  
 
If the program represented by the string P always terminates
when run on the input string D, then halts should return 1.
Otherwise it should return 0.

• Examples:

23

S1 = "int s1(char *D) {  
 while(1);
 }"

halts(S1, _) = 0

John Wickerson Hardware & Software Verification

Aside: Halting Problem
• Task. Write a program halts with the following declaration: 
 
int halts(char *P, char *D);  
 
If the program represented by the string P always terminates
when run on the input string D, then halts should return 1.
Otherwise it should return 0.

• Examples:

23

S1 = "int s1(char *D) {  
 while(1);
 }"

halts(S1, _) = 0

S6 = "int s6(char *D) {  
 return 42;
 }"

John Wickerson Hardware & Software Verification

Aside: Halting Problem
• Task. Write a program halts with the following declaration: 
 
int halts(char *P, char *D);  
 
If the program represented by the string P always terminates
when run on the input string D, then halts should return 1.
Otherwise it should return 0.

• Examples:

23

S1 = "int s1(char *D) {  
 while(1);
 }"

halts(S1, _) = 0

S6 = "int s6(char *D) {  
 return 42;
 }"

halts(S6, _) = 1

John Wickerson Hardware & Software Verification

Aside: Halting Problem

24

John Wickerson Hardware & Software Verification

Aside: Halting Problem

24

John Wickerson Hardware & Software Verification

S1

S2

S3

S4

S5

S6

Aside: Halting Problem

24

John Wickerson Hardware & Software Verification

S1

S2

S3

S4

S5

S6

Aside: Halting Problem

24

S1 S2 S3 S4 S5 S6

John Wickerson Hardware & Software Verification

S1

S2

S3

S4

S5

S6

Aside: Halting Problem

24

S1 S2 S3 S4 S5 S6

strings
interpreted as
source code

John Wickerson Hardware & Software Verification

S1

S2

S3

S4

S5

S6

Aside: Halting Problem

24

S1 S2 S3 S4 S5 S6

strings
interpreted as
source code

input strings

John Wickerson Hardware & Software Verification

S1

S2

S3

S4

S5

S6

Aside: Halting Problem

24

• • • • ••
S1 S2 S3 S4 S5 S6

strings
interpreted as
source code

input strings

John Wickerson Hardware & Software Verification

S1

S2

S3

S4

S5

S6

Aside: Halting Problem

24

✔ ✔ ✔ ✔ ✔ ✔

• • • • ••
S1 S2 S3 S4 S5 S6

strings
interpreted as
source code

input strings

John Wickerson Hardware & Software Verification

S1

S2

S3

S4

S5

S6

Aside: Halting Problem

24

✔ ✔ • • •✔

✔ ✔• • •✔

✔ ✔ ✔ ✔ ✔ ✔

• • • • ••

✔ ✔• • ••
✔• • • ••

S1 S2 S3 S4 S5 S6

strings
interpreted as
source code

input strings

John Wickerson Hardware & Software Verification

S1

S2

S3

S4

S5

S6

Aside: Halting Problem

24

✔ ✔ • • •✔

✔ ✔• • •✔

✔ ✔ ✔ ✔ ✔ ✔

• • • • ••

✔ ✔• • ••
✔• • • ••

S1

✔

✔

✔

•

•
•

S2 S3 S4 S5 S6

strings
interpreted as
source code

input strings

John Wickerson Hardware & Software Verification

S1

S2

S3

S4

S5

S6

Aside: Halting Problem

25

✔ ✔ • • •✔

✔ ✔• • •✔

✔ ✔ ✔ ✔ ✔ ✔

• • • • ••

✔ ✔• • ••
✔• • • ••

✔ ✔ ✔• • •

S1 S2 S3 S4 S5 S6

strings
interpreted as
source code

input strings

John Wickerson Hardware & Software Verification

S1

S2

S3

S4

S5

S6

Aside: Halting Problem

25

✔ ✔ • • •✔

✔ ✔• • •✔

✔ ✔ ✔ ✔ ✔ ✔

• • • • ••

✔ ✔• • ••
✔• • • ••

✔ ✔ ✔• • •

S1 S2 S3 S4 S5 S6

strings
interpreted as
source code

input strings

John Wickerson Hardware & Software Verification

Aside: Halting Problem

26

✔ ✔ • • •✔

✔ ✔• • •✔

✔ ✔ ✔ ✔ ✔ ✔

• • • • ••

✔ ✔• • ••
✔• • • ••

✔ ✔ ✔• • •

S1 S2 S3 S4 S5 S6

S1

S2

S3

S4

S5

S6

strings
interpreted as
source code

input strings

John Wickerson Hardware & Software Verification

Aside: Halting Problem

26

✔ ✔ • • •✔

✔ ✔• • •✔

✔ ✔ ✔ ✔ ✔ ✔

• • • • ••

✔ ✔• • ••
✔• • • ••

✔ ✔ ✔• • •

S1 S2 S3 S4 S5 S6

S

S1

S2

S3

S4

S5

S6

strings
interpreted as
source code

input strings

John Wickerson Hardware & Software Verification

Aside: Halting Problem

26

✔ ✔ • • •✔

✔ ✔• • •✔

✔ ✔ ✔ ✔ ✔ ✔

• • • • ••

✔ ✔• • ••
✔• • • ••

✔ ✔ ✔• • •

S1 S2 S3 S4 S5 S6

S

S1

S2

S3

S4

S5

S6

strings
interpreted as
source code

input strings

S =  
"int s(char *D) {
 if (halts(D, D))  
 while(1);  
 else  
 return 42;
 }"

John Wickerson Hardware & Software Verification

Aside: Halting Problem

27

S =  
"int s(char *D) {
 if (halts(D, D))  
 while(1);  
 else  
 return 42;
 }"

John Wickerson Hardware & Software Verification

Aside: Halting Problem

27

Key question: 
What happens if we run s(S)?

S =  
"int s(char *D) {
 if (halts(D, D))  
 while(1);  
 else  
 return 42;
 }"

John Wickerson Hardware & Software Verification

Aside: Halting Problem

27

Key question: 
What happens if we run s(S)?

s(S) halts

S =  
"int s(char *D) {
 if (halts(D, D))  
 while(1);  
 else  
 return 42;
 }"

John Wickerson Hardware & Software Verification

Aside: Halting Problem

27

Key question: 
What happens if we run s(S)?

s(S) halts
defn of s

S =  
"int s(char *D) {
 if (halts(D, D))  
 while(1);  
 else  
 return 42;
 }"

John Wickerson Hardware & Software Verification

Aside: Halting Problem

27

Key question: 
What happens if we run s(S)?

s(S) halts halts(S,S) = 0
defn of s

S =  
"int s(char *D) {
 if (halts(D, D))  
 while(1);  
 else  
 return 42;
 }"

John Wickerson Hardware & Software Verification

Aside: Halting Problem

27

Key question: 
What happens if we run s(S)?

s(S) halts halts(S,S) = 0
defn of s

defn of halts

S =  
"int s(char *D) {
 if (halts(D, D))  
 while(1);  
 else  
 return 42;
 }"

John Wickerson Hardware & Software Verification

Aside: Halting Problem

27

Key question: 
What happens if we run s(S)?

s(S) halts halts(S,S) = 0

s(S) doesn't halt

defn of s

defn of halts

S =  
"int s(char *D) {
 if (halts(D, D))  
 while(1);  
 else  
 return 42;
 }"

John Wickerson Hardware & Software Verification

Aside: Halting Problem

27

Key question: 
What happens if we run s(S)?

s(S) halts halts(S,S) = 0

s(S) doesn't halt

defn of s

defn of halts

defn of s

S =  
"int s(char *D) {
 if (halts(D, D))  
 while(1);  
 else  
 return 42;
 }"

John Wickerson Hardware & Software Verification

Aside: Halting Problem

27

Key question: 
What happens if we run s(S)?

s(S) halts halts(S,S) = 0

s(S) doesn't halthalts(S,S) = 1

defn of s

defn of halts

defn of s

S =  
"int s(char *D) {
 if (halts(D, D))  
 while(1);  
 else  
 return 42;
 }"

John Wickerson Hardware & Software Verification

Aside: Halting Problem

27

Key question: 
What happens if we run s(S)?

s(S) halts halts(S,S) = 0

s(S) doesn't halthalts(S,S) = 1

defn of s

defn of halts

defn of s

defn of halts

S =  
"int s(char *D) {
 if (halts(D, D))  
 while(1);  
 else  
 return 42;
 }"

John Wickerson Hardware & Software Verification

Aside: Halting Problem
• Task. Write a program halts with the following declaration: 
 
int halts(char *P, char *D);  
 
If the program represented by the string P always terminates
when run on the input string D, then halts should return 1.
Otherwise it should return 0.

• Examples:

28

S1 = "int s1(char *D) {  
 while(1);
 }"

halts(S1, _) = 0

S6 = "int s6(char *D) {  
 return 42;
 }"

halts(S6, _) = 1

John Wickerson Hardware & Software Verification

Aside: Halting Problem
• Task. Write a program halts with the following declaration: 
 
int halts(char *P, char *D);  
 
If the program represented by the string P always terminates
when run on the input string D, then halts should return 1.
Otherwise it should return 0.

• Examples:

28

S1 = "int s1(char *D) {  
 while(1);
 }"

halts(S1, _) = 0

S6 = "int s6(char *D) {  
 return 42;
 }"

halts(S6, _) = 1

❌

John Wickerson Hardware & Software Verification

Aside: Halting Problem
• Task. Write a program halts with the following declaration: 
 
int halts(char *P, char *D);  
 
If the program represented by the string P always terminates
when run on the input string D, then halts should return 1.
Otherwise it should return 0.

• Examples:

28

S1 = "int s1(char *D) {  
 while(1);
 }"

halts(S1, _) = 0

S6 = "int s6(char *D) {  
 return 42;
 }"

halts(S6, _) = 1

❌Alan Turing

1912–1954

John Wickerson Hardware & Software Verification

Automatic proof

29

John Wickerson Hardware & Software Verification

Automatic proof
• We often rely on automatic provers:

29

John Wickerson Hardware & Software Verification

Automatic proof
• We often rely on automatic provers:

• e.g. in Dafny, to show that invariant P is preserved,

29

John Wickerson Hardware & Software Verification

Automatic proof
• We often rely on automatic provers:

• e.g. in Dafny, to show that invariant P is preserved,

• e.g. in Isabelle methods like by auto.

29

John Wickerson Hardware & Software Verification

Automatic proof
• We often rely on automatic provers:

• e.g. in Dafny, to show that invariant P is preserved,

• e.g. in Isabelle methods like by auto.

• How do these automatic provers work?

29

