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Automatic proof
• We often rely on automatic provers:

• e.g. in Dafny, to show that invariant P is preserved,

• e.g. in Isabelle methods like by auto.

• How do these automatic provers work?
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SAT queries
• Simple case: proofs about Boolean statements. 

• ¬f  =  ¬(¬(A ∧ ¬B ∧ C) ∨ (C ∨ (B ∧ A)))
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for A in {0, 1}:
  for B in {0, 1}:
    for C in {0, 1}:
      if f(A,B,C) = 1:
        return ("SAT", [A, B, C])
return ("UNSAT")
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SAT solving
• A cleverer way: use de Morgan's rules to convert the formula 

to conjunctive normal form.

9

• It may then become obvious 
that the formula is UNSAT.

¬f

A

¬B

¬A

¬B
C

¬C

• If not, we can use the Davis–
Putnam algorithm…

Martin Davis 
1928–

Hilary Putnam 
1926–2016
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The DP method
1. If an OR-gate takes both L and ¬L, delete it.

2. If L is connected directly to the AND-gate, delete it, delete all OR-gates 
that take L, and delete any connections to ¬L.  
(The solution, if it exists, will surely involve setting L=1.)

3. If L is unused, delete all OR-gates that take ¬L.  
(The solution, if it exists, will surely involve setting L=0.)

4. If any OR-gate has no inputs, the formula is false.

5. If the AND-gate has no inputs, the formula is true.

6. Pick a literal L and repeat the above for the cases L=0 and L=1.
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Some theories
• Equality and uninterpreted functions, which knows  

that you can't have x=y and y=z without x=z, and  
that you can't have x=y without f(x)=f(y).

• Difference logic, where statements take the form x - y ≤ c.

• Presburger arithmetic, which allows statements about 
integers containing +, -, 0, 1, and =.

• Non-linear arithmetic, which allows queries like:  

• Theory of arrays, theory of bit-vectors, etc.

18
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Julius Richard Büchi 
1924–1984
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1. ¬ (x + 1 = 0) 
2. x + 1 = y + 1 ⇒ x = y 
3. x + 0 = x 
4. x + (y + 1) = (x + y) + 1 
5. x × 0 = 0 
6. x × (y + 1) = x × y + x 
7. (P(0) ∧ (∀x. P(x) ⇒ P(x+1))) ⇒ ∀y. P(y)   (for any P) 

Giuseppe Peano 
1858–1932
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    2 × xi+1 = xi         if xi is even  
    xi+1 = 3 × xi + 1   if xi is odd
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Undecidability of Peano
• Now we have multiplication, we can write a statement 

representing the Collatz conjecture: does there exist an infinite 
sequence of positive integers x0, x1, x2, … such that  
 
    2 × xi+1 = xi         if xi is even  
    xi+1 = 3 × xi + 1   if xi is odd

• So if arithmetic with multiplication were decidable, we could 
solve the Collatz conjecture automatically! 
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Undecidability of Peano
• Suppose I have an algorithm that can take an arithmetic 

statement and tell me whether it is true or not.

• The Halting Problem can be encoded as a statement about 
arithmetic. 

• So I can use my algorithm to solve the Halting Problem.

• But it is impossible to write an algorithm to solve the Halting 
Problem! 

• So it must also be impossible to write an algorithm to decide 
whether arithmetic statements are true or not.
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