
Isabelle coursework exercises

John Wickerson

Autumn term 2020

Tasks are largely independent from each other, and are arranged in roughly
increasing order of difficulty. Tasks labelled (?) are expected to be reasonably
straightforward. Tasks labelled (??) should be manageable but may require quite
a bit of thinking, and it may be necessary to consult additional sources of infor-
mation, such as the Isabelle manual and Stack Overflow. Tasks labelled (???) are
more ambitious still. It is not expected that students will complete all parts of
all the tasks. Partial credit will be given to partial answers. If you are unable to
complete a proof, partial credit will be given for explaining your thinking process
in the form of (*comments*) in the Isabelle file.

Submission process. You are expected to produce a single Isabelle theory
file called YourName.thy. This file should contain all of the definitions and
proofs for all of the tasks below that you have attempted.

Task 1 (?) Prove that

3√
2

is irrational.

Task 2 (??) Here are the first few centred pentagonal numbers.

1



Here is a recursive function for calculating centred pentagonal numbers:

pent(n) =

{
1 if n = 0

5n+ pent(n− 1) otherwise

Prove that

pent(n) =
5n2 + 5n+ 2

2

holds for all n ≥ 0.

Task 3 (??) The Fibonacci numbers (named after the Italian mathematician Leonardo
Bonacci, c.1170–1250) are defined using the following recursive definition:

fib(0) = 0

fib(1) = 1

fib(n) = fib(n− 1) + fib(n− 2) for all n > 1

The Lucas numbers (named after the French mathematician Édouard Lucas,
1842–1891) are defined quite similarly:

luc(0) = 2

luc(1) = 1

luc(n) = luc(n− 1) + luc(n− 2) for all n > 1

This task is about establishing some relationships between Lucas numbers
and Fibonacci numbers.

1. Prove that luc(n) ≥ fib(n) holds for all n ≥ 0.

2. Prove that luc(n+ 1) = fib(n) + fib(n+ 2) holds for all n ≥ 0.

Task 4 (???) This task builds on the circuit datatype from the worksheet.

Let us define the leaves of a circuit to be its constants (i.e. TRUE and FALSE)
and its inputs. Here is a function that calculates the delay of a circuit – that
is, the length of the longest path from a leaf to the circuit’s output. (NB: this
function was the topic of Task 9 of the 2019 coursework.)

1 fun delay :: circuit ⇒ nat where
2 delay (NOT c) = 1 + delay c
3 | delay (AND c1 c2) = 1 + max (delay c1) (delay c2)
4 | delay (OR c1 c2) = 1 + max (delay c1) (delay c2)
5 | delay _ = 0

2



Let us define a circuit to be balanced if all leaves are the same distance from
the output. In other words, all paths from a leaf to the output have the same
length. Write a function called is_balanced that checks whether a given
circuit is balanced. For instance,

is_balanced (AND (NOT TRUE) TRUE)

should evaluate to False, and

is_balanced (AND (NOT TRUE) (OR TRUE (INPUT 1)))

should evaluate to True.

Now write a function called balance that takes any circuit and produces a
balanced circuit that has the same input/output behaviour. Ensure that your
function is correct by proving two theorems. First, prove for any circuit c
that balance(c) has the same input/output behaviour as c. Second, prove
for any circuit c that is_balanced(balance(c)) holds.

Task 5 (???) Extend the circuit datatype with a new constructor that repre-
sents a 2-input NAND gate. The NAND gate is a universal gate, in the sense
that any other gate can be represented using some combination of NAND
gates – a fact that was first proved by Henry Sheffer in 1913.

Devise an optimisation called transform_to_NAND that transforms any
given circuit into a NAND-only representation. Ensure that your optimisation
is correct by proving two theorems.

1. Prove that transform_to_NAND never changes the behaviour of a
circuit.

2. Prove that transform_to_NAND always produces circuits that use
only NAND gates, inputs, and the TRUE constant.

Now extend the delay function so that it defines NAND gates to have a delay
of 1 (just like AND and OR gates). Devise an upper bound on the delay in-
curred by transform_to_NAND. That is, if the circuit c has delay d, find a
function f such that you can prove that the delay of transform_to_NAND(c)
never exceeds f(d). As a hint: myself, I found that f(d) = 2d+ 1 worked,
but your definition of f may vary depending on the details of how you im-
plement transform_to_NAND.

3


