John Wickerson Hardware & Software Verification

[Collatz in Dafny]

Hardware & Software
Verification

John Wickerson & Pete Harrod

Lecture 10: SAT and SMT solving

Hardware & Software Verification

Automatic proof

John Wickerson Hardware & Software Verification

Automatic proof

e We often rely on automatic provers:

John Wickerson Hardware & Software Verification

Automatic proof

e We often rely on automatic provers:

e e.g.in Dafny, to show that invariant P is preserved,

John Wickerson Hardware & Software Verification

Automatic proof

e We often rely on automatic provers:
e e.g.in Dafny, to show that invariant P is preserved,

e e.g. in Isabelle methods like by auto.

John Wickerson Hardware & Software Verification

Automatic proof

e We often rely on automatic provers:

e e.g.in Dafny, to show that invariant P is preserved,
e e.g. in Isabelle methods like by auto.

e How do these automatic provers work?

John Wickerson Hardware & Software Verification

SAT queries

e Simple case: proofs about Boolean statements.

John Wickerson Hardware & Software Verification

SAT queries

e Simple case: proofs about Boolean statements.

o f = (AA-BAC)= (Cv (BAA)

John Wickerson Hardware & Software Verification

SAT queries

e Simple case: proofs about Boolean statements.

e f = (((AA-BAC)V(Cv(BAA))

John Wickerson Hardware & Software Verification

SAT queries

e Simple case: proofs about Boolean statements.

o f = —l(—l(A/_'B/\C)V(CV(B/\A)))

John Wickerson Hardware & Software Verification

SAT queries

e Simple case: proofs about Boolean statements.

o f = —l(—l(A/_'B/\C)V(CV(B/\A)))

DD Do
}

John Wickerson Hardware & Software Verification

SAT queries

e Simple case: proofs about Boolean statements.

o f = —l(—l(A/_'B/\C)V(CV(B/\A)))

A A B C|f
O O 010
O 1 010
C
O 1 110
} 1 0 0] O
1T 0 1 110
1T 1 0|1 O
1T 1 1 1 0

John Wickerson Hardware & Software Verification

SAT queries

e Simple case: proofs about Boolean statements.

o f = —l(—l(A/_'B/\C)V(CV(B/\A)))

A A B C|f
o o0 o01]o

B {>Q—:>—[>CH —f o o0 110
o 1 o01]o

C o 1 11]0
} 1 0 0] 0

1 0 110

A formula can be VALID, SATISFIABLE, 1 1 ol o

0

UNSATISFIABLE, or INVALID.

John Wickerson Hardware & Software Verification

SAT queries

e Simple case: proofs about Boolean statements.

o f = —l(—l(A/_'B/\C)V(CV(B/\A)))

A A B C|~f
0 0 0 0
=D P |0 0 1]
0 1 0 0

C
0 1 1 0
} always true 1 0 0 0
1 0 1 0
A formula can be VALID, SATISFIABLE, 1 1 olo
UNSATISFIABLE, or INVALID. T

John Wickerson Hardware & Software Verification

SAT queries

e Simple case: proofs about Boolean statements.

o f = —l(—l(A/_'B/\C)V(CV(B/\A)))

A A B C|f
0 0 0 0
B I : > | : —f 0 0 1 0
0 1 0 0
C
0 1 1 0
} always true . 1 0O 0] O
sometimes true
1 0 1 0
A formula can be VALID, SATISFIABLE, 1 1 olo
UNSATISFIABLE, or INVALID. T

John Wickerson Hardware & Software Verification

SAT queries

e Simple case: proofs about Boolean statements.

o f = —l(—l(A/_'B/\C)V(CV(B/\A)))

A A B C|f
0 0 0 0
B I : > | : —f 0 0 1 0
0 1 0 0
C
0 1 1 0
} always true . 1 0O 0] O
sometimes true
1 0 1 0
A formula can be VALID, SATISFIABLE, 1 1 olo
UNSATISFIABLE, or INVALID. T

always false

John Wickerson Hardware & Software Verification

SAT queries

e Simple case: proofs about Boolean statements.

o f = —l(—l(A/_'B/\C)V(CV(B/\A)))

A A B C|f
0 0 0 0
B I : > | : —f 0 0 1 0
0 1 0 0
C
0 1 1 0
} always true . 1 0O 0] O
sometimes true
1 0 1 0
A formula can be VALID, SATISFIABLE, 1 1 olo
UNSATISFIABLE, or INVALID. T

always false sometimes false

John Wickerson Hardware & Software Verification

SAT solving

e Asimple algorithm:

for A in {0, 1}:
for B in {0, 1}:
for C in {0, 1}:
if f(A,B,C) = 1:
return ("SAT", [A, B, C])
return ("UNSAT")

John Wickerson Hardware & Software Verification

SAT solving

John Wickerson Hardware & Software Verification

SAT solving

e A cleverer way: use de Morgan's rules to convert the formula
to conjunctive normal form.

John Wickerson Hardware & Software Verification

SAT solving

e A cleverer way: use de Morgan's rules to convert the formula
to conjunctive normal form.

—B
=D
—C

John Wickerson Hardware & Software Verification

SAT solving

e A cleverer way: use de Morgan's rules to convert the formula
to conjunctive normal form.

e It may then become obvious
that the formula is UNSAT.

—B
=D
—C

John Wickerson Hardware & Software Verification

SAT solving

e A cleverer way: use de Morgan's rules to convert the formula
to conjunctive normal form.

e It may then become obvious
that the formula is UNSAT.

—B
. Da
—C

John Wickerson Hardware & Software Verification

SAT solving

e A cleverer way: use de Morgan's rules to convert the formula
to conjunctive normal form.

e It may then become obvious
that the formula is UNSAT.

-B e If not, we can use the Davis-—
C- }—'f Putnam algorithm...

T

John Wickerson Hardware & Software Verification

SAT solving

e A cleverer way: use de Morgan's rules to convert the formula
to conjunctive normal form.

e It may then become obvious
that the formula is UNSAT.

-B e If not, we can use the Davis-—
C- }—'f Putnam algorithm...

T

John Wickerson Hardware & Software Verification

SAT solving

e A cleverer way: use de Morgan's rules to convert the formula
to conjunctive normal form.

e It may then become obvious
that the formula is UNSAT.

-B e If not, we can use the Davis-—
C- }—If Putnam algorithm...

T

Fk’ : gk vy
Martin Davis Hilary pytnam
008~ 1926-2016

John Wickerson Hardware & Software Verification

The DP method

John Wickerson Hardware & Software Verification

The DP method

1. If an OR-gate takes both L and —L, delete it.

John Wickerson Hardware & Software Verification

The DP method

1. If an OR-gate takes both L and —L, delete it.

:}

John Wickerson Hardware & Software Verification

The DP method

1. If an OR-gate takes both L and —L, delete it.

D » ==

John Wickerson Hardware & Software Verification

The DP method

1. If an OR-gate takes both L and —L, delete it.

2. If Lis connected directly to the AND-gate, delete it, delete all OR-gates

that take L, and delete any connections to —L.
(The solution, if it exists, will surely involve setting L=1.)

oD

John Wickerson Hardware & Software Verification

The DP method

1. If an OR-gate takes both L and —L, delete it.

2. If Lis connected directly to the AND-gate, delete it, delete all OR-gates

that take L, and delete any connections to —L.
(The solution, if it exists, will surely involve setting L=1.)

S D> -
= =

John Wickerson Hardware & Software Verification

The DP method

1. If an OR-gate takes both L and —L, delete it.

2. If Lis connected directly to the AND-gate, delete it, delete all OR-gates

that take L, and delete any connections to —L.
(The solution, if it exists, will surely involve setting L=1.)

3. If Lis unused, delete all OR-gates that take —L.

(The solution, if it exists, will surely involve setting L=0.)

John Wickerson Hardware & Software Verification

The DP method

1. If an OR-gate takes both L and —L, delete it.

2. If Lis connected directly to the AND-gate, delete it, delete all OR-gates

that take L, and delete any connections to —L.
(The solution, if it exists, will surely involve setting L=1.)

3. If Lis unused, delete all OR-gates that take —L.

(The solution, if it exists, will surely involve setting L=0.)

:}

John Wickerson Hardware & Software Verification

The DP method

1. If an OR-gate takes both L and —L, delete it.

2. If Lis connected directly to the AND-gate, delete it, delete all OR-gates

that take L, and delete any connections to —L.
(The solution, if it exists, will surely involve setting L=1.)

3. If Lis unused, delete all OR-gates that take —L.

(The solution, if it exists, will surely involve setting L=0.)

D » ==

John Wickerson Hardware & Software Verification

The DP method

1. If an OR-gate takes both L and —L, delete it.

2. If Lis connected directly to the AND-gate, delete it, delete all OR-gates

that take L, and delete any connections to —L.
(The solution, if it exists, will surely involve setting L=1.)

3. If Lis unused, delete all OR-gates that take —L.

(The solution, if it exists, will surely involve setting L=0.)

4. If any OR-gate has no inputs, the formula is false.

John Wickerson Hardware & Software Verification

The DP method

1. If an OR-gate takes both L and —L, delete it.

2. If Lis connected directly to the AND-gate, delete it, delete all OR-gates

that take L, and delete any connections to —L.
(The solution, if it exists, will surely involve setting L=1.)

3. If Lis unused, delete all OR-gates that take —L.

(The solution, if it exists, will surely involve setting L=0.)
4. If any OR-gate has no inputs, the formula is false.

5. If the AND-gate has no inputs, the formula is true.

John Wickerson Hardware & Software Verification

The DP method

1. If an OR-gate takes both L and —L, delete it.

2. If Lis connected directly to the AND-gate, delete it, delete all OR-gates

that take L, and delete any connections to —L.
(The solution, if it exists, will surely involve setting L=1.)

3. If Lis unused, delete all OR-gates that take —L.

(The solution, if it exists, will surely involve setting L=0.)
4. If any OR-gate has no inputs, the formula is false.
5. If the AND-gate has no inputs, the formula is true.

6. Pick a literal L and repeat the above for the cases L=0 and L=1.

John Wickerson Hardware & Software Verification

DP example 1

Hardware & Software Verification

DP example 1
: ™)

John Wickerson Hardware & Software Verification

DP example 1

—A
=D, D
=
A— A=0

> e

Hardware & Software Verification

DP example 1

—A
=D, D
=
A— A=0

Hardware & Software Verification

DP example 1

—A
=D, D
=
A— A=0

Hardware & Software Verification

John Wickerson

DP example

B=1

1

Dy

Satisfiable, e.g.
when A=0, B=1, C=0

John Wickerson Hardware & Software Verification

DP example 2

Hardware & Software Verification

DP example 2

John Wickerson Hardware & Software Verification

DP example 2
ﬁCD ﬁCD
D @}

ﬁADz}

John Wickerson Hardware & Software Verification

DP example 2

<> :E'D > - D=
<7 > BD:} o
5y

ﬁADz}

John Wickerson Hardware & Software Verification

DP example 2

<> :E'D > - D=
<7 > BD:} o
5y

Unsatisfiable
- _IB
—A D _.}

John Wickerson Hardware & Software Verification

DP example 2

oy D} . I

Unsatisfiable

i i

O >
3

) ™ o

B | —B
("
BD — D
C C
A A C-
B A=0

B
—A

Hardware & Software Verification

John Wickerson

DP example 2

v

-

>

v

>

~C—

C_

}

Unsatisfiable

}

John Wickerson

Hardware & Software Verification

DP example 2

v

>

v

>

>
B=0

-

~C—

C_

}

Unsatisfiable

}

Unsatisfiable

Towards SMT solving

John Wickerson Hardware & Software Verification

Towards SMT solving

e We can now prove basic Boolean formulas. But what about
proving something like Ax (B+C)=AxB + A x C?

John Wickerson Hardware & Software Verification

Towards SMT solving

e We can now prove basic Boolean formulas. But what about
proving something like Ax (B+C)=AxB + A x C?

o If these are 32-bit integers, we could make this a SAT problem

by treating each variable as 32 Boolean variables and encoding
the rules of Boolean arithmetic.

John Wickerson Hardware & Software Verification

Towards SMT solving

e We can now prove basic Boolean formulas. But what about
proving something like Ax (B+C)=AxB + A x C?

o If these are 32-bit integers, we could make this a SAT problem

by treating each variable as 32 Boolean variables and encoding
the rules of Boolean arithmetic.

e Or we can move up to SMT: satisfiability modulo theories.

John Wickerson Hardware & Software Verification

Towards SMT solving

e We can now prove basic Boolean formulas. But what about
proving something like Ax (B+C)=AxB + A x C?

o If these are 32-bit integers, we could make this a SAT problem

by treating each variable as 32 Boolean variables and encoding
the rules of Boolean arithmetic.

e Or we can move up to SMT: satisfiability modulo theories.

D

John Wickerson Hardware & Software Verification

Towards SMT solving

e We can now prove basic Boolean formulas. But what about
proving something like Ax (B+C)=AxB + A x C?

o If these are 32-bit integers, we could make this a SAT problem

by treating each variable as 32 Boolean variables and encoding
the rules of Boolean arithmetic.

e Or we can move up to SMT: satisfiability modulo theories.

B—} > y—zs-1—}

John Wickerson Hardware & Software Verification

Some theories

John Wickerson Hardware & Software Verification

Some theories

e Equality and uninterpreted functions, which knows
that you can't have x=y and y=z without x=z, and
that you can't have x=y without f(x)=f(y).

Hardware & Software Verification

John Wickerson

Some theories

e Equality and uninterpreted functions, which knows
that you can't have x=y and y=z without x=z, and
that you can't have x=y without f(x)=f(y).

e Difference logic, where statements take the form x -y < c.

Hardware & Software Verification

John Wickerson

Some theories

e Equality and uninterpreted functions, which knows
that you can't have x=y and y=z without x=z, and
that you can't have x=y without f(x)=f(y).

e Difference logic, where statements take the form x -y < c.

e Presburger arithmetic, which allows statements about
integers containing +, -, 0, 1, and =.

John Wickerson Hardware & Software Verification

Some theories

e Equality and uninterpreted functions, which knows
that you can't have x=y and y=z without x=z, and
that you can't have x=y without f(x)=f(y).

e Difference logic, where statements take the form x -y < c.

e Presburger arithmetic, which allows statements about
integers containing +, -, 0, 1, and =.

i 3
i ¥

Mojzesz Presburger
1904-c.1943

| —
—

John Wickerson Hardware & Software Verification

Some theories

e Equality and uninterpreted functions, which knows
that you can't have x=y and y=z without x=z, and
that you can't have x=y without f(x)=f(y).

e Difference logic, where statements take the form x -y < c.

e Presburger arithmetic, which allows statements about
integers containing +, -, 0, 1, and =.

1. = (x+1=0)

2. X+1=y+1=>x=y .’

3. Xx+0=x " st

4. x4 (y + 1) - (X + Y) + 1 Mojzesz Presburger
5. (P(0) A (Vx. P(x) = P(x+1))) = Vy. P(y) (for any P) __1_9,0%_01943

| —

John Wickerson Hardware & Software Verification

Some theories

e Equality and uninterpreted functions, which knows
that you can't have x=y and y=z without x=z, and
that you can't have x=y without f(x)=f(y).

e Difference logic, where statements take the form x -y < c.

e Presburger arithmetic, which allows statements about
integers containing +, -, 0, 1, and =.

e Non-linear arithmetic, which allows queries like:
(sin(z)® = cos(log(y) - z) VbV —z% > 2.3y) A (b Vy < —34.4V exp(z) > 2)

John Wickerson Hardware & Software Verification

Some theories

e Equality and uninterpreted functions, which knows
that you can't have x=y and y=z without x=z, and
that you can't have x=y without f(x)=f(y).

e Difference logic, where statements take the form x -y < c.

e Presburger arithmetic, which allows statements about
integers containing +, -, 0, 1, and =.

e Non-linear arithmetic, which allows queries like:
(sin(z)® = cos(log(y) - z) VbV —z% > 2.3y) A (b Vy < —34.4V exp(z) > 2)

e Theory of arrays, theory of bit-vectors, etc.

Hardware & Software Verification

Decidability of Presburger

Hardware & Software Verification

Decidability of Presburger

X+y=12

Hardware & Software Verification

Decidability of Presburger

X+y=Z 1 2 4 8 16 32 64
x=0 1 0 0 1 0 0
y=0 1 0 1 0 1 0
z=0 0 1 1 1 1 0

Decidability of Presburger

X+y=12

1 2 4 8 16 32 64
x=0 1T 0 0 1T 0 O
y=0 1 0 1T 0 1 O
z= 0 O 1T 1T 1 1 0

B o OG0

: ORI

(%)

John Wickerson Hardware & Software Verification

Decidability of Presburger

X+y=12

< X

|l Il
o O O A
O = =
_ O O

@O o @G0
A

—

(%)

Julius Richard Bilichi
1924-1984

L —

John Wickerson Hardware & Software Verification

Adding multiplication

1. 7 (x+1=0)

2. X+1=y+1=x=y

3. Xx+0=x

4. x+(y+1)=(x+vy)+1

5. xx0=0

6. Xx(y+1)=Xxxy+Xx

7. (P(0) A (Vx. P(x) = P(x+1))) = Vy. P(y) (for any P)

John Wickerson

Hardware & Software Verification

Adding multiplication

Nk~

- (x +1=0)

X+1T=y+1=>x=y

X+ 0=Xx

X+(y+1)=(x+y)+1

Xx0=0

Xx(y+1)=Xxy+X

(P(0) A (VXx. P(x) = P(x+1))) = Vy. P(y) (for any P)

Giuseppe Peang
1858-1937

| —

T —

Hardware & Software Verification

Undecidability of Peano

John Wickerson Hardware & Software Verification

Undecidability of Peano

e Now we have multiplication, we can write a statement
representing the Collatz conjecture: does there exist an infinite
sequence of positive integers xo, X1, X2, ... such that

2 x Xit1 = Xi iIf X; is even
Xis1=3xX;+ 1 ifxiis odd

John Wickerson Hardware & Software Verification

Undecidability of Peano

e Now we have multiplication, we can write a statement
representing the Collatz conjecture: does there exist an infinite
sequence of positive integers xo, X1, X2, ... such that

2 x Xit1 = Xi iIf X; is even
Xis1=3xX;+ 1 ifxiis odd

e So if arithmetic with multiplication were decidable, we could
solve the Collatz conjecture automatically!

Hardware & Software Verification

Undecidability of Peano

John Wickerson Hardware & Software Verification

Undecidability of Peano

e Suppose | have an algorithm that can take an arithmetic
statement and tell me whether it is true or not.

John Wickerson Hardware & Software Verification

Undecidability of Peano

e Suppose | have an algorithm that can take an arithmetic
statement and tell me whether it is true or not.

e The Halting Problem can be encoded as a statement about
arithmetic.

John Wickerson Hardware & Software Verification

Undecidability of Peano

e Suppose | have an algorithm that can take an arithmetic
statement and tell me whether it is true or not.

e The Halting Problem can be encoded as a statement about
arithmetic.

e Sol can use my algorithm to solve the Halting Problem.

John Wickerson Hardware & Software Verification

Undecidability of Peano

e Suppose | have an algorithm that can take an arithmetic
statement and tell me whether it is true or not.

e The Halting Problem can be encoded as a statement about
arithmetic.

e Sol can use my algorithm to solve the Halting Problem.

e But it is impossible to write an algorithm to solve the Halting
Problem!

John Wickerson Hardware & Software Verification

Undecidability of Peano

e Suppose | have an algorithm that can take an arithmetic
statement and tell me whether it is true or not.

e The Halting Problem can be encoded as a statement about
arithmetic.

e Sol can use my algorithm to solve the Halting Problem.

e But it is impossible to write an algorithm to solve the Halting
Problem!

e So it must also be impossible to write an algorithm to decide
whether arithmetic statements are true or not.

Aside: Halting Problem

John Wickerson Hardware & Software Verification

Aside: Halting Problem

e Task. Write a program halts with the following declaration:

int halts(char *P, char *D);

If the program represented by the string P always terminates

when run on the input string D, then halts should return 1.
Otherwise it should return 0.

John Wickerson Hardware & Software Verification

Aside: Halting Problem

e Task. Write a program halts with the following declaration:

int halts(char *P, char *D);

If the program represented by the string P always terminates

when run on the input string D, then halts should return 1.
Otherwise it should return 0.

e Examples:

John Wickerson Hardware & Software Verification

Aside: Halting Problem

e Task. Write a program halts with the following declaration:

int halts(char *P, char *D);

If the program represented by the string P always terminates

when run on the input string D, then halts should return 1.
Otherwise it should return 0.

e Examples:

S1 = "int sl(char *D) {
while(1l);
}ll

John Wickerson Hardware & Software Verification

Aside: Halting Problem

e Task. Write a program halts with the following declaration:

int halts(char *P, char *D);

If the program represented by the string P always terminates

when run on the input string D, then halts should return 1.
Otherwise it should return 0.

e Examples:

S1 = "int sl(char *D) {
while(1l);
}ll

halts(S1,)=0

John Wickerson Hardware & Software Verification

Aside: Halting Problem

e Task. Write a program halts with the following declaration:

int halts(char *P, char *D);

If the program represented by the string P always terminates

when run on the input string D, then halts should return 1.
Otherwise it should return 0.

e Examples:

S1 = "int sl(char *D) { S6 = "int s6(char *D) {
while(1); return 42;
}ll }ll
halts(S1,)=0

John Wickerson Hardware & Software Verification

Aside: Halting Problem

e Task. Write a program halts with the following declaration:

int halts(char *P, char *D);

If the program represented by the string P always terminates

when run on the input string D, then halts should return 1.
Otherwise it should return 0.

e Examples:

S1 = "int sl(char *D) { S6 = "int s6(char *D) {
while(1); return 42;
}ll }ll
halts(S1,)=0 halts(S6,) =1

Aside: Halting Problem

Aside: Halting Problem

John Wickerson Hardware & Software Verification

Aside: Halting Problem

S1
S2
S3
S4
S5

S6

John Wickerson Hardware & Software Verification

Aside: Halting Problem

S1 S2 S3 S4 S5 S6
S1

S2
S3
S4
S5

S6

John Wickerson Hardware & Software Verification

Aside: Halting Problem

S1 S2 S3 S4 S5 S6

skrings
&m&mpre_%ad as
source code S6

S5

John Wickerson Hardware & Software Verification

AS

: Halting Problem

S2 S3 S4 S5 S6

E,Mpuﬁ strings ff S3
. S4

skrings
| S5

&m&mpr&hd aSs
source code S6

John Wickerson Hardware & Software Verification

AS

: Halting Problem

input strings | S3
| S4
skrings o

im&er[@re%ed aS
source code S6

John Wickerson Hardware & Software Verification

AS

: Halting Problem

input s&iv\fas

skrings
im&er[vré&ed aS
source code S6

S5

John Wickerson Hardware & Software Verification

AsiI

: Halting Problem

input sEisz

skrings
tnker Fre&ed aS
source code

John Wickerson Hardware & Software Verification

AslI

: Halting Problem

input sEEMgs

skrings
im%erpre%@d aS
source code S6

S5

John Wickerson Hardware & Software Verification

AsiI

: Halting Problem
e v o e v V

input sEisz

skrings
tnker Fre&ed aS
source code

John Wickerson Hardware & Software Verification

AsiI

: Halting Problem
vV °« v Vv - o

input sEisz

skrings
tnker Fre&ed aS
source code

John Wickerson Hardware & Software Verification

AsiI

: Halting Problem
v - Vv Vv - o

input sEisz

skrings
tnker Fre&ed aS
source code

John Wickerson Hardware & Software Verification

AsiI

: Halting Problem
s (AR

input sEisz

skrings
tnker Fre&ed aS
source code

John Wickerson Hardware & Software Verification

Aside: Halting Problem
s - s (2

"int s(char *D) {
if (halts(D, D))
while(1);
else
return 42;

Ve

input strings

p

skrings
tnker Fre&ed aS
source code

John Wickerson Hardware & Software Verification

Aside: Halting Problem

S =
"int s(char *D) {
if (halts(D, D))
while(1);
else
return 42;

p

John Wickerson Hardware & Software Verification

Aside: Halting Problem

g =
"int s(char *D) {
if (halts(D, D)) Key question:
while(1l); What happens if we run s (S)?
else

return 42;

p

John Wickerson Hardware & Software Verification

Aside: Halting Problem

g =
"int s(char *D) {
if (halts(D, D)) Key question:
while(1l); What happens if we run s (S)?
else

return 42;

p

s (S) halts

John Wickerson Hardware & Software Verification

Aside: Halting Problem

g =
"int s(char *D) {
if (halts(D, D)) Key question:
while(1l); What happens if we run s (S)?
else

return 42;
}Il

defn of s
s (S) halts >

John Wickerson Hardware & Software Verification

Aside: Halting Problem

g =
"int s(char *D) {
if (halts(D, D)) Key question:
while(1l); What happens if we run s (S)?
else

return 42;
}Il

defn of s
s (S) halts » halts(S,S) =0

John Wickerson Hardware & Software Verification

Aside: Halting Problem

g =
"int s(char *D) {
if (halts(D, D)) Key question:
while(1l); What happens if we run s(S)?
else
return 42;
}ll
defn of s
s(S) halts » halts(S,S) =0

defn of halts

v

John Wickerson Hardware & Software Verification

Aside: Halting Problem

g =
"int s(char *D) {
if (halts(D, D)) Key question:
while(1l); What happens if we run s(S)?
else
return 42;
}ll
defn of s
s(S) halts » halts(S,S) =0

defn of halts

v

s (S) doesn't halt

John Wickerson Hardware & Software Verification

Aside: Halting Problem

S =
"int s(char *D) {
if (halts(D, D)) Key question:
while(1l); What happens if we run s(S)?
else
return 42;
}ll
defn of s
s (S) halts » halts(S,S) =0
defn of halts
defn of s !

< s (S) doesn't halt

John Wickerson Hardware & Software Verification

Aside: Halting Problem

S =
"int s(char *D) {
if (halts(D, D)) Key question:
while(1l); What happens if we run s(S)?
else
return 42;
}ll
defn of s
s (S) halts » halts(S,S) =0
defn of halts
defn of s !

halts(S,S) =1 < s (S) doesn't halt

John Wickerson Hardware & Software Verification

Aside: Halting Problem

S =
"int s(char *D) {
if (halts(D, D)) Key question:
while(1); What happens if we run s(S)?
else
return 42;
}ll
defn of s
s (S) halts » halts(S,S) =0
defn of halts defn of halts
defn of s '

halts(S,S) =1 < s (S) doesn't halt

John Wickerson Hardware & Software Verification

Aside: Halting Problem

e Task. Write a program halts with the following declaration:

int halts(char *P, char *D);

If the program represented by the string P always terminates

when run on the input string D, then halts should return 1.
Otherwise it should return 0.

e Examples:

S1 = "int sl(char *D) { S6 = "int s6(char *D) {
while(1); return 42;
}ll }ll
halts(S1,)=0 halts(S6,) =1

John Wickerson

e Examples:

S1

Aside:

e Task. Writeap
int halts(char
If the program repre

when run on the |
Otherwise it s

"int sl (char *D)
while(1);
}ll

halts(S1,)=0

{

S6

Hardware & Software Verification

t s should return 1.

"int s6(char *D) {
return 42;

}Il
halts(S6,) =1

John Wickerson Hardware & Software Verification

Aside: ialting

int halts(char

If the program repre
when run on the |
Otherwise it s

e Examples:

/

Alan Turing
1912-1954

S1 = "int sl(char *D) { S6

while(1);
}ll
halts(S1,)=0

roblem

lowing declaration:

ng P always terminates
ts should return 1.

= "1nt s6(char *D) {
return 42;

}ll
halts(S6,) =1

John Wickerson Hardware & Software Verification

Automatic proof

John Wickerson Hardware & Software Verification

Automatic proof

e We often rely on automatic provers:

John Wickerson Hardware & Software Verification

Automatic proof

e We often rely on automatic provers:

e e.g.in Dafny, to show that invariant P is preserved,

John Wickerson Hardware & Software Verification

Automatic proof

e We often rely on automatic provers:
e e.g.in Dafny, to show that invariant P is preserved,

e e.g. in Isabelle methods like by auto.

John Wickerson Hardware & Software Verification

Automatic proof

e We often rely on automatic provers:

e e.g.in Dafny, to show that invariant P is preserved,
e e.g. in Isabelle methods like by auto.

e How do these automatic provers work?

