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There are three tasks and they are ordered in roughly increasing order of dif-
ficulty. Tasks are independent from each other, so failure to complete one task
should have no bearing on later tasks. Tasks labelled (?) are expected to be rea-
sonably straightforward. Tasks labelled (??) should be manageable but may re-
quire quite a bit of thinking, and it may be necessary to consult additional sources
of information, such as the Isabelle manual and Stack Overflow. Tasks labelled
(???) are more ambitious still.

Marking principles. It is not expected that students will complete all parts of
all the tasks. Partial credit will be given to partial answers. If you are unable
to complete a proof, partial credit will be given for explaining your thinking
process in the form of (*comments*) in the Isabelle file.

Submission process. You are expected to produce a single Isabelle theory
file called YourName.thy. This file should contain all of the definitions and
proofs for all of the tasks below that you have attempted.

Plagiarism policy. You are allowed to consult the coursework tasks from pre-
vious years – the questions and model solutions for these are available. You
are allowed to consult internet sources like Isabelle tutorials. You are allowed
to work together with the other student in your pair. You are allowed to ask
questions on Stack Overflow or the Isabelle mailing list, but make your ques-
tions generic (e.g. “Why isn’t the subst method working as I expected?”);
please don’t ask for solutions to these specific tasks! And please don’t share
your answers to these tasks outside of your own pair. If you would like to
share your answers to these tasks publicly, e.g. on a public GitHub repo, you
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are welcome to do so, but please check with me first, because some students
may still be working on the coursework with an extended deadline.

Task 1 (?) This task builds on the circuit datatype from the worksheet. We
shall add an extra optimisation that exploits the following Boolean identi-
ties:

(a ∨ b) ∧ (a ∨ c) ≡ a ∨ (b ∧ c)

(a ∨ b) ∧ (c ∨ a) ≡ a ∨ (b ∧ c)

(a ∨ b) ∧ (b ∨ c) ≡ b ∨ (a ∧ c)

(a ∨ b) ∧ (c ∨ b) ≡ b ∨ (a ∧ c)

In HSV_tasks_2021.thy, you are given a function called factorise,
which traverses a given circuit looking for opportunities to apply those iden-
tities (in the left-to-right direction). Each time the identity is applied, one
OR-gate is removed from the circuit, thus reducing its area.

1. You have been given three test cases in HSV_tasks_2021.thy that
show how factorise works. Write another test case that demon-
strates a circuit from which factorise is able to remove two OR-
gates.

2. Use Isabelle to prove that factorise is correct. That is, prove for
any circuit c that factorise(c) has the same input/output behaviour
as c.

3. Write an improved version of factorise, called factorise2, that
is additionally able to exploit the following identities:

(a ∧ b) ∨ (a ∧ c) ≡ a ∧ (b ∨ c)

(a ∧ b) ∨ (c ∧ a) ≡ a ∧ (b ∨ c)

(a ∧ b) ∨ (b ∧ c) ≡ b ∧ (a ∨ c)

(a ∧ b) ∨ (c ∧ b) ≡ b ∧ (a ∨ c)

4. Use Isabelle to prove that factorise2 is correct.

Task 2 (??) This task concerns the following theorem:

Theorem. For all integers a and b and natural numbers n, a2n+1+
b2n+1 is divisible by a+ b.
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1. Sketch a proof of the theorem. (Hint: use mathematical induction on
n.)

2. Mechanise your proof in Isabelle.

3. With the help of Isabelle, disprove the following non-theorem by pro-
viding a counterexample:

Non-theorem. For all integers a and b and natural numbers n,
a2n+2 + b2n+2 is divisible by a+ b.

Task 3 (???) This task concerns the shift-and-add-3 algorithm for converting bi-
nary numbers into binary-coded decimal (BCD) numbers.

Let us represent binary numbers as lists of Booleans, and BCD numbers
as lists of nibbles, where each nibble is a tuple of four Booleans. In what
follows, let us write 0 for False and 1 for True.

In HSV_tasks_2021.thy, you are given a function called binary_to_nat
that converts a binary number into a natural number. So, for instance,

binary_to_nat [0,1,0,1] = 5.

You are also given a function called bcd_to_nat that converts a BCD num-
ber into a natural number. So, for instance,

bcd_to_nat [(0,0,1,1),(0,0,0,0)] = 30.

1. Implement in Isabelle a function called binary_to_bcd that uses the
shift-and-add-3 algorithm to convert a binary number into the equiva-
lent BCD number. For instance,

binary_to_bcd [0,1,0,1,0,1]

should return [(0,0,1,0),(0,0,0,1)].

2. Use Isabelle to prove that whenever binary_to_bcd produces a list
of nibbles, each of those nibbles corresponds to a valid BCD digit (i.e.
its value is in the range 0–9).

3. Use Isabelle to prove that binary_to_bcd is correct. That is, prove
for all binary numbers b that

bcd_to_nat (binary_to_bcd b) = binary_to_nat b.
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