
Dafny coursework exercises

John Wickerson

Autumn term 2021

There are five tasks and they are ordered in roughly increasing order of diffi-
culty. Tasks labelled (?) are expected to be straightforward. Tasks labelled (???)
are highly challenging; it is not expected that many students will complete these.

Marking principles. If you have completed a task, you will get full marks
for it and it is not necessary to show your working. If you have not managed
to complete a task, partial credit may be given if you can demonstrate your
thought process. For instance, you might not be able to come up with all
the invariants that are necessary to complete the verification, but perhaps you
can confirm some invariants and express (in comments) some of the other
invariants that you think are needed but haven’t managed to verify.

Submission process. You are expected to produce a single Dafny source
file called YourName.dfy. This file should contain your solutions to all
of the tasks below that you have attempted. You are welcome to show your
working on incomplete tasks by decorating your file with /*comments*/
or //comments.

Plagiarism policy. You are allowed to consult the coursework tasks from
previous years – the questions and model solutions for these are available. You
are allowed to consult internet sources like Dafny tutorials. You are allowed
to work together with the other student in your pair. Please don’t submit
these programs as questions on Stack Overflow! And please don’t share your
answers to these tasks outside of your own pair. If you would like to share
your answers to these tasks publicly, e.g. on a public GitHub repo, you are
welcome to do so, but please check with me first, because some students may
still be working on the coursework with an extended deadline.

1



Task 1 (?) Write a Dafny method that meets the following specification.

1 method create_multiples_of_two(A:array<int>)
2 ensures forall n ::
3 0 <= n < A.Length ==> A[n] == 2*n
4 modifies A

Instrument your code with enough loop invariants (and other assertions as
you see fit) so that Dafny can prove that the postcondition is always met.

Task 2 (??) Let us define the sorted predicate as follows:

1 predicate sorted(A:array<int>)
2 reads A
3 {
4 forall m,n ::
5 0 <= m < n < A.Length ==> A[m] <= A[n]
6 }

Here is an implementation of ‘exchange’ sort, which is a variant of bubble
sort. In exchange sort, each element is compared not just with the element
that immediately follows it, but with all the elements that follow it.

1 method exchange_sort (A:array<int>)
2 ensures sorted(A)
3 modifies A
4 {
5 var i := 0;
6 while i < A.Length - 1 {
7 var j := i + 1;
8 while j < A.Length {
9 if A[i] > A[j] {

10 A[i], A[j] := A[j], A[i];
11 }
12 j := j + 1;
13 }
14 i := i + 1;
15 }
16 }

Instrument this code with enough loop invariants (and other assertions as
you see fit) so that Dafny can prove that the postcondition is always met.

2



Task 3 (??) Here is a sorting method that was recently discovered by Stanley
Fung from the University of Leicester.

1 method fung_sort (A:array<int>)
2 ensures sorted(A)
3 modifies A
4 {
5 var i := 0;
6 while i < A.Length {
7 var j := 0;
8 while j < A.Length {
9 if A[i] < A[j] {

10 A[i], A[j] := A[j], A[i];
11 }
12 j := j+1;
13 }
14 i := i+1;
15 }
16 }

Instrument this code with enough loop invariants (and other assertions as
you see fit) so that Dafny can prove that the postcondition is always met.

3



Task 4 (???) Here is an implementation of ‘odd/even’ sort, which is another vari-
ant of bubble sort. Odd/even sort splits each pass into two stages; in the first
stage, odd-indexed elements are compared (and possibly swapped) with
their successor, and in the second stage, the same is done for the even-
indexed elements. In this implementation, repeated passes are made until a
fixed point is reached.

1 method odd_even_sort(A:array<int>)
2 ensures sorted(A)
3 modifies A
4 decreases *
5 {
6 var is_sorted := false;
7 while !is_sorted {
8 is_sorted := true;
9 var i := 0;

10 while 2*i+2 < A.Length {
11 if A[2*i+2] < A[2*i+1] {
12 A[2*i+1], A[2*i+2] := A[2*i+2], A[2*i+1];
13 is_sorted := false;
14 }
15 i := i+1;
16 }
17 i := 0;
18 while 2*i+1 < A.Length {
19 if A[2*i+1] < A[2*i] {
20 A[2*i], A[2*i+1] := A[2*i+1], A[2*i];
21 is_sorted := false;
22 }
23 i := i+1;
24 }
25 }
26 }

Instrument this code with enough loop invariants (and other assertions as
you see fit) so that Dafny can prove that the postcondition is always met.
Note that you are not required to prove that this method terminates, as in-
dicated by the ‘decreases *’ clause. (As it happens, the method does
terminate, but I think it is too difficult to prove this in Dafny.)

4



Remark. Usually, Dafny proves total correctness. A method is said to
be ‘totally correct’ if it always terminates and it always gives the cor-
rect result when it does. In the task above, we are only proving what is
called partial correctness. Partial correctness means that if the method
terminates, it gives the correct result. (In particular, this implies that
a method that always enters an infinite loop can always be considered
‘partially correct’, regardless of its postcondition!) The following equa-
tion provides a concise way to think about the relationship between the
two versions of correctness:

total correctness = partial correctness + termination.

5



Task 5 (???) Here is yet another variant of bubble sort. Where ordinary bubble
sort considers pairs of adjacent elements, this variant considers triples of
adjacent elements.

1 method bubble_sort3(A:array<int>)
2 ensures sorted(A)
3 modifies A
4 decreases *
5 {
6 var stable := false;
7 while !stable {
8 stable := true;
9 var j := 0;

10 while 2*j+2 <= A.Length {
11 if 2*j+2 == A.Length {
12 if A[2*j+1] < A[2*j] {
13 A[2*j+1], A[2*j] := A[2*j], A[2*j+1];
14 stable := false;
15 }
16 } else {
17 if A[2*j+1] < A[2*j] {
18 A[2*j+1], A[2*j] := A[2*j], A[2*j+1];
19 stable := false;
20 }
21 if A[2*j+2] < A[2*j+1] {
22 A[2*j+2], A[2*j+1] := A[2*j+1], A[2*j+2];
23 stable := false;
24 }
25 if A[2*j+1] < A[2*j] {
26 A[2*j+1], A[2*j] := A[2*j], A[2*j+1];
27 stable := false;
28 }
29 }
30 j := j + 1;
31 }
32 }
33 }

Instrument this code with enough loop invariants (and other assertions as
you see fit) so that Dafny can prove that the postcondition is always met.
Note that you are not required to prove that this method terminates, as in-
dicated by the ‘decreases *’ clause. (As it happens, the method does

6



terminate, but I think it is too difficult to prove this in Dafny.)

7


