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Chapter 1

Introduction

This document provides an introduction to automated software verification using
a tool called Dafny. It is aimed at an audience of electrical engineers. Some prior
programming experience is assumed. No particularly complicated mathematics is
needed, but an ability to trace program executions manually will be helpful.

Dafny is one of several tools available for verifying the functional correctness
of programs. Others include VCC, VeriFast, Facebook Infer, Why, and Whiley.
Dafny was invented around 2009 by Rustan Leino from Microsoft Research, and
has been under development ever since. It is freely available to download.

https://github.com/dafny-lang/dafny

There is a growing interest in using tools like Dafny. In short, computer sys-
tems are becoming increasingly complicated and increasingly relied upon. It is
therefore becoming ever more difficult and ever more important to guarantee that
they behave correctly. One way to establish the correctness of a piece of soft-
ware is to program it and verify it in a language like Dafny. Besides being an
ordinary imperative program language, Dafny allows users to write specifications
of their programs. Dafny verifies that the program adheres to its specification
by generating a set of logical statements called verification conditions, and then
automatically proving these using an automated theorem prover called Z3. This
is all done without actually running the program, or even providing any of the
program’s inputs. This means that the verification result holds for any possible
input.

Already, large pieces of software have been verified in this manner. For in-
stance, Microsoft’s Hyper-V system, which comprises about 60,000 lines of low-
level C and assembly code, has been verified using a software verification tool
called VCC.' And as verification tools (and the automatic theorem provers on

"https://www.microsoft.com/en-us/research/project/
vcc-a-verifier-for-concurrent-c/
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which they rely) become ever more powerful, we are likely to see them applied to
many other pieces of software in the future.

The aim of this course, then, is simply to introduce electrical engineers to this
important topic.

After getting you started with Dafny (Chapter 2), these notes present a few
worked examples of how some small programs can be verified in Dafny (Chap-
ters 3 and 4).

Acknowledgements 1'd like to thank Dr Matt Windsor for his invaluable help
in developing this material.



Chapter 2

Getting started

You can run Dafny in your web browser at ht tps://risedfun.com/Dafny.
Alternatively, you can install it locally through the Visual Studio Code IDE —
instructions for this are at https://github.com/dafny-lang/dafny/
wiki/INSTALL.

If you use the online editor, you’ll need to click the » button to re-verify
your program each time you make a change. If you use Visual Studio Code, your
program will re-verify automatically each time you make a change.

If you use Visual Studio Code, you can export your Dafny code into an exe-
cutable. This only works if your program has passed verification. To do so, press
F'5 and then look at the ‘Output’ pane.

Throughout this document, I’ll assume that you’re using Visual Studio Code.



Chapter 3

First program: maximum of two
numbers

Here is a simple Dafny program for returning the maximum of two integers.

method max (x:int, y:int) returns (r:int) {
if x <y {
return y;
} else {
return x;

The syntax should be reasonably familiar, but there are a few bits worth noting:

e Output variables are named in the function’s signature, a bit like in Verilog.
There can be multiple output variables, separated by commas. Output vari-
ables (here r) can be assigned to, but input variables (here x and y) cannot.

e Outputs can be returned either as parameters of the return keyword, or
by assigning to a named output variable. So, rather than return vy;, |
could have written r := y; return;. And note here that unlike in C,
assignments are written using : = rather than =.

e There’s no need for parentheses around the conditions of i £ statements (or
while statements). But their bodies do need to be enclosed in { braces }.

If we add a Main function

method Main () {
var m:int := max(3,5);
print m, "\n";

}



then we can press F5 to see that the program appears to be working correctly —
at least on this particular set of inputs. But what can we say about the program’s
behaviour on any input?

3.1 Formal specifications

Let us provide a specification for our program. We can do this using requires
and ensures clauses. One thing that our program ensures (we hope) is that
the returned value is greater than or equal to both of the inputs. We can express
this as follows.

method max(x:int, y:int) returns (r:int)
ensures r>=x
ensures r>=y

if x < y {
return y;

} else {
return x;

After you type this in, you should see ‘Verified’ in the status bar at the bottom
of your screen.

Expressions introduced with the ensures keyword are called postconditions,
because they are conditions that are guaranteed to be true after the program fin-
ishes executing. We can also write preconditions using the requires keyword
— these are conditions that are required to be true before the program begins exe-
cuting. This particular program does not need any preconditions.

(If you changed the r>=y postcondition into r>y, Dafny would soon object
— it would say ‘Not verified’ in the status bar, and would list the problems it found
in the ‘Problems’ pane.)

We have now confirmed that our max program meets its specification. But is
the specification good enough? We can demonstrate an inadequacy in our specifi-
cation by changing the code from return y to return y+1. Dafny confirms
that the specification still holds, but our code is no longer doing what we might
expect. Our specification is too weak.

We can strengthen our specification by adding another postcondition: that the
returned value is either x or y.

ensures r==x || r==y

With this postcondition, return y+1 will (happily) no longer work.
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3.2 Beyond preconditions and postconditions

Is our specification now strong enough? Probably yes. There’s nothing else worth
saying about the relationship between the program’s outputs and its inputs. Is
there anything else worth specifying about our program? One thing we might
want to know is that our program always terminates. In fact, Dafny has already
checked this for us. To see this, observe what happens if you write a program that
doesn’t terminate. Try adding

while true {}

at the start of the program, and note that the verification fails.
If Dafny says that a program is ‘Verified’, it guarantees that whenever a method
is called, if all of its preconditions are met, then:

1. the method will terminate,
2. when the method terminates, all of its postconditions will be met,

3. all array accesses made by the method will be within the array’s bounds,
and

4. all assertions in the method will pass.



Chapter 4

Second program: maximum of an
array

Here is a program for calculating the maximum value in an array of integers.

method maxarray (A:array<int>) returns (r:int)
{

r := A[0];

var 1 := 1;

while 1 < A.Length

{
if r < A[i] |

Even before we have specified any postconditions, Dafny is unhappy: it is
concerned that the array access A[0] on line 3 might be out of bounds. This
concern is reasonable, because A might be an empty array (that is, A.Length
is 0). We could rectify this by adding some code to return a special value (minus
infinity, perhaps?) if the array is empty. However, on this occasion, we will follow
an alternative approach: we will add the precondition

requires 0 < A.Length

which prevents the method being called on an empty array.

Dafny also needs to prove that the while loop always terminates. A general
method for proving that a loop terminates is to devise a measure, which is an ex-
pression that (i) evaluates to a non-negative integer, and (ii) decreases on every



iteration of the loop. In this case, we can choose A.Length - i as our mea-
sure. This will decrease by 1 on each iteration of the loop, and when it reaches 0,
the loop will exit. Dafny is quite good at guessing measures on its own, but you
can provide your own measure by writing

decreases A.Length - i

after the loop condition.

At this point, we can be sure that our program has no out-of-bounds array ac-
cesses and will always terminate. Let us now prove that it actually does something
useful.

The postcondition

ensures exists J :: 0 <= j < A.Length && r == A[7J]

can be read as: ‘there exists a value j such that j is between zero (inclusive) and
A.Length (exclusive) and r is equal to the value of array A at index j’. Or,
in short: r is one of the elements in the array. We say that 7 is an existentially
quantified variable, which means that the expression after the : : is true for some
values of j. (Had we written forall instead of exists then j would have
been universally quantified, which means that the expression after the : : would
have to be true for all values of j.)

This postcondition is indeed met by our program, but Dafny is not able to de-
termine this without further assistance. The problem is the while loop. Without
knowing the inputs of a program, Dafny can’t know how many iterations of a loop
will be executed. There are an unbounded number of ‘execution paths’ through
the program — one where the loop is not executed at all, one where it is executed
once, one where it is executed twice, and so on. Plainly, Dafny cannot enumerate
all of these, so it must find a different way to break the problem down.

4.1 Reasoning about loops

What it does is rely on loop invariants. A loop invariant is a condition that is true
immediately before entering the loop and at the end of every iteration of the loop.
It is worth being very precise about exactly where loop invariants are supposed to
be true, and a flowchart is the best way to do this — see Figure 4.1.

With the help of loop invariants, Dafny reasons about loops in three steps.

1. It first tries to prove that the loop invariants are true before entering the loop,
using whatever knowledge it has established about the program’s state at
this point.



The loop invariants must be true
every time control passes this point.

Figure 4.1: A flowchart for ‘while test { body }’ that shows where the
loop invariant must be true.

2. It then tries to prove that the loop invariants are preserved by an arbitrary
iteration of the loop. This means that Dafny forgets everything it knows
about the program state, and only assumes that the loop invariants and the
test condition are true. It then tries to prove that if the loop’s body is exe-
cuted under these assumptions, the loop invariants will be reestablished.

3. After the loop exits, Dafny carries forward just two pieces of knowledge
about the program’s state: that the loop invariants are true, and that the test
condition is false.

Since we have not specified a loop invariant in our code, all Dafny knows at
the end of the loop is that i is not less than A . Length. This is not enough to be
able to prove the postcondition.

Therefore, we must devise some loop invariants. What do we know about the
state every time control passes the red arrow in Figure 4.1? What can we say
about i, for instance? Upon entering the loop, i is 1, and by the end it is equal to
A.Length. So one appropriate invariant is the following.

invariant 1 <= i <= A.Length

Dafny confirms that this is indeed a valid invariant, but it’s not strong enough to
deduce our desired postcondition. What it does give us is the ability to deduce that
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i must be equal to A . Length after the loop exits. The argument is that when the
loop exits, we know that the above invariant is true, but we also know that the test
condition is false. From 1 <= A.Lengthand ! (i < A.Length) itfollows
that i == A.Length. Try adding

assert i == A.Length;

after the loop, and note that without the invariant above, Dafny cannot prove that
this assertion will always be true.

Another observation: even though the value of r may change as we go round
the loop, it is always the case that r is equal to one of the first i elements in the
array.

invariant exists j :: 0 <= j < i && r == A[]]

This invariant is now strong enough to deduce our desired postcondition. The
argument is that when the loop exits, we know the above invariant is true, but we
also know that i is equal to A. Length. Combining these facts gives us exactly
the postcondition we desired.

Our final source code is as follows.

method maxarray (A:array<int>) returns (r:int)
requires A.Length > 0

ensures exists j :: 0 <= j < A.Length && r == A[7]]
{

r = A[O];

var i := 1;

while i < A.Length
invariant 1 <= i <= A.Length
invariant exists j :: 0 <= j < 1 && r == A[]]
decreases A.Length - i

if r < A[1] {
r := A[i];
}
1 c= O
}
assert i == A.Length;

As an exercise: devise another postcondition that says r is greater than or
equal to every element in A. Devise a related loop invariant that allows Dafny to
prove that your new postcondition is always true.
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4.2 Predicates

Dafny provides predicates as a way to define abbreviations for common expres-
sions. For instance, in our maxarray program, we can define a predicate called
contains

predicate contains (A:array<int>, v:int)
reads A

exists j :: 0 <= j < A.Length && v == A[]]
}

and then use this predicate to simplify our postcondition.
ensures contains (A, r)

Note that predicates are required to specify which arrays they can read, via the
reads keyword. (The reason is: if Dafny knows that a particular array is not read
by a predicate, then it knows that any writes made by the program to that array
cannot affect whether or not the predicate is true. This may reduce the number
of times Dafny has to keep re-evaluating the predicate.) Methods don’t have to
provide reads clauses. However, had our maxarray method written to A rather
than just read from it, it would need modifies A as part of its specification.

Better still, we can define a generalised contains_upto predicate

predicate contains_upto (A:array<int>, hi:int, v:int)
reads A
requires hi <= A.Length

exists j :: 0 <= J < hi && v == A[]]
}

that is true when v is among the first hi elements of A. This predicate needs a
precondition: that hi does not exceed A.Length. We can use this predicate to
make our loop invariant more readable.

invariant contains_upto (A, i, r)

Observe, by the way, that contains_upto (A, A.Length, r) isthen
equivalent to contains (A, r).
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