mirror of
https://github.com/supleed2/ELEC70056-HSV-CW1.git
synced 2024-12-22 13:45:48 +00:00
Isabelle Task 4 mostly complete
Add opt_redundancy Format opt_redundancy test cases Prove opt_redundancy is sound Proof for "opt_redundancy never increases area" is incomplete
This commit is contained in:
parent
8b234e89a1
commit
a59839d924
|
@ -141,26 +141,308 @@ next
|
|||
qed(simp+)
|
||||
|
||||
section "Task 4: More logic optimisation"
|
||||
(* Note: - opt_redundancy is shown to be valid (opt_redundancy_is_sound)
|
||||
- opt_redundancy never increases area is incomplete (opt_redundancy_never_inc_area)
|
||||
*)
|
||||
|
||||
lemma (* test case *)
|
||||
"opt_redundancy (AND (INPUT 1) (OR (INPUT 1) (INPUT 2)))
|
||||
= INPUT 1"
|
||||
(* by eval *) oops
|
||||
lemma (* test case *)
|
||||
"opt_redundancy (AND (AND (INPUT 1) (OR (INPUT 1) (INPUT 2)))
|
||||
(OR (AND (INPUT 1) (OR (INPUT 1) (INPUT 2))) (INPUT 2)))
|
||||
= INPUT 1"
|
||||
(* by eval *) oops
|
||||
lemma (* test case *)
|
||||
"opt_redundancy (AND (AND (INPUT 1) (OR (INPUT 1) (INPUT 2)))
|
||||
(OR (INPUT 2) (AND (INPUT 1) (OR (INPUT 1) (INPUT 2)))))
|
||||
= INPUT 1"
|
||||
(* by eval *) oops
|
||||
lemma (* test case *)
|
||||
"opt_redundancy (AND (AND (AND (INPUT 1) (OR (INPUT 1) (INPUT 2)))
|
||||
(OR (INPUT 2) (AND (INPUT 1) (OR (INPUT 1) (INPUT 2)))))
|
||||
(OR (INPUT 1) (INPUT 2)))
|
||||
= INPUT 1"
|
||||
(* by eval *) oops
|
||||
(* An optimisation that exploits the following Boolean identities:
|
||||
`a | (a & b) = a`
|
||||
`(a & b) | a = a`
|
||||
`a & (a | b) = a`
|
||||
`(a | b) & a = a`
|
||||
*)
|
||||
fun opt_redundancy :: "circuit \<Rightarrow> circuit" where
|
||||
"opt_redundancy (NOT c) = NOT (opt_redundancy c)"
|
||||
| "opt_redundancy (OR c1 (AND c2 c3)) = (
|
||||
let c1' = opt_redundancy c1 in
|
||||
let c2' = opt_redundancy c2 in
|
||||
let c3' = opt_redundancy c3 in
|
||||
if (c1' = c2') | (c1' = c3') then c1'
|
||||
else if c2' = c3' then OR c1' c2'
|
||||
else OR c1' (opt_redundancy (AND c2 c3)))"
|
||||
| "opt_redundancy (OR (AND c1 c2) c3) = (
|
||||
let c1' = opt_redundancy c1 in
|
||||
let c2' = opt_redundancy c2 in
|
||||
let c3' = opt_redundancy c3 in
|
||||
if (c1' = c3') | (c2' = c3') then c3'
|
||||
else if c1' = c2' then OR c1' c3'
|
||||
else OR (opt_redundancy (AND c1 c2)) c3')"
|
||||
| "opt_redundancy (AND c1 (OR c2 c3)) = (
|
||||
let c1' = opt_redundancy c1 in
|
||||
let c2' = opt_redundancy c2 in
|
||||
let c3' = opt_redundancy c3 in
|
||||
if (c1' = c2') | (c1' = c3') then c1'
|
||||
else if c2' = c3' then AND c1' c2'
|
||||
else AND c1' (opt_redundancy (OR c2 c3)))"
|
||||
| "opt_redundancy (AND (OR c1 c2) c3) = (
|
||||
let c1' = opt_redundancy c1 in
|
||||
let c2' = opt_redundancy c2 in
|
||||
let c3' = opt_redundancy c3 in
|
||||
if (c1' = c3') | (c2' = c3') then c3'
|
||||
else if c1' = c2' then AND c1' c3'
|
||||
else AND (opt_redundancy (OR c1 c2)) c3')"
|
||||
| "opt_redundancy (AND c1 c2) = (
|
||||
let c1' = opt_redundancy c1 in
|
||||
let c2' = opt_redundancy c2 in
|
||||
if c1' = c2' then c1' else AND c1' c2')"
|
||||
| "opt_redundancy (OR c1 c2) = (
|
||||
let c1' = opt_redundancy c1 in
|
||||
let c2' = opt_redundancy c2 in
|
||||
if c1' = c2' then c1' else OR c1' c2')"
|
||||
| "opt_redundancy TRUE = TRUE"
|
||||
| "opt_redundancy FALSE = FALSE"
|
||||
| "opt_redundancy (INPUT i) = INPUT i"
|
||||
|
||||
lemma "opt_redundancy (AND (INPUT 1)
|
||||
(OR (INPUT 1)
|
||||
(INPUT 2))) = INPUT 1" by eval (* test case *)
|
||||
|
||||
lemma "opt_redundancy (AND (AND (INPUT 1)
|
||||
(OR (INPUT 1)
|
||||
(INPUT 2)))
|
||||
(OR (AND (INPUT 1)
|
||||
(OR (INPUT 1)
|
||||
(INPUT 2)))
|
||||
(INPUT 2))) = INPUT 1" by eval (* test case *)
|
||||
|
||||
lemma "opt_redundancy (AND (AND (INPUT 1)
|
||||
(OR (INPUT 1)
|
||||
(INPUT 2)))
|
||||
(OR (INPUT 2)
|
||||
(AND (INPUT 1)
|
||||
(OR (INPUT 1)
|
||||
(INPUT 2))))) = INPUT 1" by eval (* test case *)
|
||||
|
||||
lemma "opt_redundancy (AND (AND (AND (INPUT 1)
|
||||
(OR (INPUT 1)
|
||||
(INPUT 2)))
|
||||
(OR (INPUT 2)
|
||||
(AND (INPUT 1)
|
||||
(OR (INPUT 1)
|
||||
(INPUT 2)))))
|
||||
(OR (INPUT 1)
|
||||
(INPUT 2))) = INPUT 1" by eval (* test case *)
|
||||
|
||||
theorem opt_redundancy_is_sound: "opt_redundancy c \<sim> c"
|
||||
proof (induct rule:opt_redundancy.induct)
|
||||
case (2 c1 c2 c3)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(2) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("3_1" c1 c2 v)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(3) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("3_2" c1 c2 v va)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(4) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("3_3" c1 c2)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(5) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("3_4" c1 c2)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(6) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("3_5" c1 c2 v)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(7) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case (4 c1 c2 c3)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(8) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("5_1" c1 c2 v)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(9) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("5_2" c1 c2 v va)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(10) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("5_3" c1 c2)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(11) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("5_4" c1 c2)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(12) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("5_5" c1 c2 v)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(13) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("6_1" va v)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(14) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("6_2" va vb v)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(15) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("6_6" vb v va)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(19) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("6_7" vb vc v va)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(20) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("6_8" v va)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(21) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("6_9" v va)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(22) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("6_10" vb v va)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(23) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("6_12" v va)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(25) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("6_17" v va)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(30) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("6_22" va vb v)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(35) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("6_25" va v)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(38) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("7_1" va v)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(39) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("7_2" va vb v)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(40) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("7_6" vb v va)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(44) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("7_7" vb vc v va)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(45) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("7_8" v va)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(46) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("7_9" v va)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(47) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("7_10" vb v va)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(48) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("7_12" v va)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(50) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("7_17" v va)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(55) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("7_22" va vb v)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(60) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
next
|
||||
case ("7_25" va v)
|
||||
thus ?case by (smt (verit) opt_redundancy.simps(63) circuits_equiv.elims(1) simulate.simps(1) simulate.simps(2))
|
||||
qed(simp+)
|
||||
|
||||
theorem opt_redundancy_never_inc_area: "area (opt_redundancy c) \<le> area c"
|
||||
proof (induct rule:opt_redundancy.induct)
|
||||
case (2 c1 c2 c3)
|
||||
(* area (opt_redundancy (OR c1 (AND c2 c3))) \<le> area (OR c1 (AND c2 c3)) *)
|
||||
let ?c1' = "opt_redundancy c1"
|
||||
let ?c2' = "opt_redundancy c2"
|
||||
let ?c3' = "opt_redundancy c3"
|
||||
from 2 have IH:"area (OR ?c1' (AND ?c2' ?c3')) \<le> area (OR c1 (AND c2 c3))" by fastforce
|
||||
have a:"(area (opt_redundancy (OR c1 (AND c2 c3))) = area ?c1')
|
||||
\<or> (area (opt_redundancy (OR c1 (AND c2 c3))) = area (OR ?c1' ?c2'))
|
||||
\<or> (area (opt_redundancy (OR c1 (AND c2 c3))) = area (OR ?c1' (opt_redundancy (AND c2 c3))))"
|
||||
by (smt opt_redundancy.simps(2))
|
||||
have b:"area ?c1' \<le> area (OR c1 (AND c2 c3))" using IH by simp
|
||||
have c:"area (OR ?c1' ?c2') \<le> area (OR c1 (AND c2 c3))" using IH by simp
|
||||
have d:"area (OR ?c1' (opt_redundancy (AND c2 c3))) \<le> area (OR c1 (AND c2 c3))" using IH sorry
|
||||
thus ?case using a b c d by metis
|
||||
next
|
||||
case ("3_1" c1 c2 v)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("3_2" c1 c2 v va)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("3_3" c1 c2)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("3_4" c1 c2)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("3_5" c1 c2 v)
|
||||
thus ?case sorry
|
||||
next
|
||||
case (4 c1 c2 c3)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("5_1" c1 c2 v)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("5_2" c1 c2 v va)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("5_3" c1 c2)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("5_4" c1 c2)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("5_5" c1 c2 v)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("6_1" va v)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("6_2" va vb v)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("6_6" vb v va)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("6_7" vb vc v va)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("6_8" v va)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("6_9" v va)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("6_10" vb v va)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("6_12" v va)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("6_17" v va)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("6_22" va vb v)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("6_25" va v)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("7_1" va v)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("7_2" va vb v)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("7_6" vb v va)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("7_7" vb vc v va)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("7_8" v va)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("7_9" v va)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("7_10" vb v va)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("7_12" v va)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("7_17" v va)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("7_22" va vb v)
|
||||
thus ?case sorry
|
||||
next
|
||||
case ("7_25" va v)
|
||||
thus ?case sorry
|
||||
qed(simp+)
|
||||
|
||||
end
|
Loading…
Reference in a new issue