
Requirements Capture 

First year students are expected to design digital circuits using Quartus: a hardware design platform 

that is too complex and adds unnecessary cognitive load. Furthermore, the application is only acces-

sible via a paid licence and cannot run on all operating systems. Students generally SSH into college 

servers in order to use it remotely. A survey among university students showed that: 

• 88% of the students get confused by Quartus’ convoluted menus system. 

• 63% of the students struggle to understand the error messages provided by Quartus. 

• 75% of the students agreed that a simpler application would improve their learning experience. 

Essential features: 

• Circuit diagram editor. 

• Ability to reuse previous designs. 

• Support for buses. 

• Diagram validation and simulation tools. 

Desirable features: 

• Open-source and cross-platform. 

• Easily extensible. 

• Intuitive and responsive user interface. 

• Highly informative error messages. 

Functional Reactive Programming: this is a declarative programming paradigm used to design 

highly responsive and maintainable UIs. The F# Elmish library implements this with the Model-

View-Update (MVU) architecture. MVU allows developers to split the interface design into a se-

ries of independent views, which makes maintaining and extending the application easier. 

Web Ecosystem: it is cross-platform, commonly known and increasingly adopted. Electron al-

lows developers to deploy cross-platform desktop applications developed with HTML, CSS and 

JavaScript. Electron uses Node.js to access OS APIs like the file system ones. 

Functional Programming in F#: F# has a powerful type checker that provides strong code cor-

rectness guarantees. Furthermore, functional code is easy to test and has no unexpected side-

effects. Fable allows developers to compile F# code to JavaScript, which can be run on Electron. 

Create/open projects and files. 

Circuit diagram editor. 

Wires widths are automatically in-

ferred. If the algorithm detects in-

consistencies, an error is immedi-

ately displayed to the user by high-

lighting the faulty wires in red and 

showing an error notification: 

Currently open project and file. 

Editing utilities, also accessi-

ble via keyboard shortcuts. 

Users can reuse previously created circuits as 

components. This simple ALU is built from a 4 

bits adder and a selectable 4 bits inverter. 

The catalogue allows users to choose 

what components to add to the diagram. 

The properties tab allows users to 

view and change the properties of 

the components in the diagram. 

The simulation tab allows users to 

validate and simulate the circuit dia-

gram. 

Validations include: 

• No floating wires. 

• No wires driven by multiple signals. 

• No dependency cycles with hierar-

chical components. 

• No combinatorial logic cycles: 

Error Messages Quality 

100% of the users agreed that DEflow’s er-

ror messages guided them well towards the 

resolution of their issues. 

DEflow has been evaluated by collecting user feedback among university students, by comparing it 

with alternative software and by using it to design a RISC CPU. 

Intuitiveness 

Users were required to com-

plete 5 tasks, while being given 

minimal guidance. In the ma-

jority of cases, first-time-users 

were able to complete tasks in 

less than five minutes. 

System Usability Scale (SUS) 

SUS is an industry standard to 

measure usability of digital prod-

ucts. A score of 68 is average, a 

score above 80 is excellent. 

Users answers yielded a SUS score 

of 84.57 for DEflow. 

Scalability 

DEflow was successfully employed to design, 

validate and simulate a RISC CPU in less than an 

hour. 

Performance 

Latencies for all DEflow algorithms 

are orders of magnitude below 

the threshold of human percep-

tion. Hence, the application al-

ways feels highly responsive. 

Code Extensibility 

The extremely positive results obtained in the evaluation indicate that the application is a better al-

ternative than Quartus in the context of first year digital electronics teaching. Future works include 

the introduction of a waveform generator and the addition of components via drag & drop. 

DEflow: A Hardware Design Platform for Teaching Digital Electronics 
Marco Selvatici 

Problem Technology Stack: Fable-Elmish-Electron 

This project aims to create a hardware design application that is more suitable than Quartus for 

first year digital electronics teaching. Therefore the following features have been outlined: 

 

 

 

Features 

Previous designs are listed simi-

larly to the builtin components. 

Evaluation 

Conclusion 

High Degree of Modularisation: the code-

base is modularised to ensure changes in a 

module do not affect the others. 

Clear Modules API: module behaviours are 

exposed via a set of simple and clear APIs. 

Descriptive Data Types: type definitions 

precisely map the data domain being mod-

elled and allow the F# type checker to spot 

most bugs. 

Functional Style: the application is mostly 

written in F#. Functional Reactive Program-

ming allows developers to extend the benefits 

of functional programming to user interface 

design. 


