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Embedded Systems 

Coursework 2 Part 2: Real time systems 
In the first part of the lab, you wrote code to make the synthesiser play notes with tasks in an 

interrupt and two threads. This time we will develop the system further and complete the remaining 

core goals: 

• Use a mutex and queue for thread-safe data sharing 

• Decode the knobs and implement a volume control  

• Relay key presses to another keyboard module using the CAN bus 

• Measure execution time of a task 

5. Add a mutex 
Part 1 of the lab notes left a synchronisation bug. The array keyArray is now a global variable 

and it is accessed by both the main loop and scanKeysTask(). It cannot be accessed atomically 

because it is an array of multiple bytes – it requires multiple operations to read and write. Since 

all the accesses to the array are from threads, not interrupts, it can be protected by a mutex. 

a) Declare a global handle for a FreeRTOS mutex that can be used by different threads to 

access the mutex object: 

SemaphoreHandle_t keyArrayMutex; 

FreeRTOS uses the same data structure for semaphores and mutexes, so the handle type 

and function names overlap. The main difference between a semaphore and a mutex is the 

way they are used. A mutex is ‘taken’ (locked) by a thread while it accesses the protected 

data or resource, then ‘given’ (unlocked) when it is finished. All threads that access the 

resource take then give the mutex in the same way. 

A semaphore is used asymmetrically – one thread tries to take the semaphore, but it is 

blocked until a different thread gives it. A single thread will only take or give a particular 

semaphore, never both. 

Create the mutex and assign its handle in the setup function, before the scheduler is started: 

keyArrayMutex = xSemaphoreCreateMutex(); 

The reference for this function is here: https://www.freertos.org/CreateMutex.html 

b) Now you can take the mutex while keyArray is accessed using the appropriate functions: 

xSemaphoreTake(keyArrayMutex, portMAX_DELAY); 

… //Access keyArray here 

xSemaphoreGive(keyArrayMutex); 

Guard accesses to keyArray in both scanKeysTask() and displayUpdateTask(). The 

parameter portMAX_DELAY causes xSemaphoreTake() to wait indefinitely for the mutex to 

become unlocked. You can use a finite time, expressed in scheduler ticks, but then you 

would also need to test if xSemaphoreTake() was successful and deal with a timeout 

appropriately.  

https://www.freertos.org/CreateMutex.html
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c) Test your code. It should work as before. 

6. Knobs 
The knobs generate a quadrature signal as they rotate. We can find the amount of rotation by 

counting the state changes and we can find the direction of rotation from the ordering of state 

changes. 

The process can be represented as a state transition table. We can determine if a rotation has 

happened by comparing the current state to the previous state: 

Using mutexes 
You have a choice of how often to lock the mutex while different elements of keyArray are 

accessed. You could take the mutex separately when every element is read or written. That 

would mean the array as a whole is not synchronised – the display thread could read part of the 

array from the latest scan of the key matrix and part from the previous scan. Maybe that 

wouldn’t be a problem just to display the contents but in other applications this 

desynchronisation could very bad. 

An alternative is to lock the mutex once while the entire array is accessed. However, that means 

the mutex could be locked for a relatively long time, and task prioritisation could be affected. For 

example, the key scan loop contains delays to allow the external wiring to settle and the mutex 

would be locked all this time. 

A better approach may be to create local copies of the array in each function that accesses it. 

You can use the C function memcpy() for this purpose. Then the mutex would only be locked 

while the copy is taking place, and not the processing. The downside of this method is that extra 

memory and CPU execution time are required to make the copies. It would be impractical for 

large arrays. 

The correct approach will depend on the application. There will always be complexity when 

concurrent tasks are required to spend a significant portion of their execution time accessing 

shared data. 
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Figure 1: Quadrature signals indicate rotation direction 
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a) Decode knob 3 (the right-hand knob) into a rotation variable by comparing the current state 

and previous state of the appropriate bits in the key matrix. You will need to extend your key 

matrix scan to include row 3. The A and B signals for knob 3 can be read in columns 0 and 1 

of row 3. The decoding process should happen every time the key matrix is scanned so 

include it in scanKeysTask(). 

Store the previous state of the A and B signals in a local variable. Assign the current state to 

the previous state once decoding is complete so that it is ready to use as the previous state 

in the next iteration.  

The result of the knob decode is a rotation variable that keeps track of the knob position. 

Create this variable as a global variable so it can be accessed by other threads. Add a 

printout of the variable to your display and check that you can count rotation of the knob. 

You can protect access to this variable with keyArrayMutex since it will be accessed at the 

same time as keyArray. 

The rotation variable should increase or decrease by 2 for every detent of rotation. 

a) You will probably notice that the knob decode doesn’t work very well when you turn the 

knob quickly. The problem is the key matrix isn’t scanned quickly enough to detect the 

transient states, when the inputs {B,A} are briefly at 01 or 10 between detents of the knob. 

One partial solution is to increase the sample rate of the key matrix. Try changing the 

initiation interval of scanKeysTask() from 50ms to 20ms. That should improve the accuracy 

but it still won’t be fast enough to capture very fast knob rotation. 

Another improvement can be made by making a better effort of interpreting the ‘impossible’ 

state transitions, when both A and B change at the same time. These transitions are likely to 

be detected if the intermediate states are missed. On their own, an impossible transition 

does not tell you the direction the knob rotated but you can guess by assuming the direction 

was the same as the last legal transition. Increment or decrement the rotation by 2 in case of 

an impossible transition, which assumes that one intermediate state was missed. For 

example: 

Previous 
{B,A} 

Current 
{B,A} 

Rotation 
variable 

 

00 00  No change 

00 01 +1  

00 10 -1  

00 11  Ignore impossible transition 

01 00 -1  

01 01  No change 

01 10  Ignore impossible transition 

01 11 +1  

10 00 +1  

10 01  Ignore impossible transition 

10 10  No change 

10 11 -1  

11 00  Ignore impossible transition 

11 01 -1  

11 10 +1  

11 11  No change 
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Iteration of 
scanKeysTask() 

Previous 
{B,A} 

Current 
{B,A} 

Rotation 
variable 

 

1 N/A 00  No change 

2 00 01 +1 Normal change 

3 01 11 +1 Normal change 

4 11 00 +2 Missed state, use same sign as before 

b) The knob can be used to implement a simple volume control. First, add limits to your knob 

decoder so the maximum rotation can be 16 and the minimum can be 0. 

Audio volume controls usually adopt a log taper, which means the output amplitude varies 

non-linearly with knob position. We will implement a simple log taper by right-shifting 

(dividing by 2n) the output value by an amount proportional to the knob position as it’s 

calculated in sampleISR(): 

Vout = Vout >> (8 - knob3Rotation/2); 

If the volume is 16, there is no change to the original function. If the volume is reduced to 

14, the output value is right-shifted by one and halved. If the volume is zero, the right shift 

by 8 means that the output value is always ±1. knob3Rotation is divided by 2 because the 

variable changes by 2 for every knob detent. 

Test the volume control. You should find that steps in the volume control are approximately 

consistent in the perceived loudness. 

c) The mutex keyArrayMutex, which you used to protect the variable knob3Rotation, cannot 

be locked by sampleISR() because it is an interrupt. Maintain correct data synchronisation 

by changing the modification to knob3Rotation in scanKeysTask() to an atomic access. 

Make sure there is no way the ISR can read a rotation value that’s temporarily outside the 

permitted bounds, for example if the rotation is incremented then checked against the 

maximum. 

d) (Advanced) The code will get messy if the knob decoder is replicated for the three other 

knobs. Implement a knob class with methods that allow you to: 

• Update the rotation value using the latest state of the key matrix 

• Set upper and lower limits 

• Read the current rotation value 

Make the class thread safe, meaning that all public methods behave as reenterant functions 

and they can be called from concurrent tasks without need needing additional 

synchronisation locks. 

Knob accuracy 
It’s not ideal to use a high sample rate to detect the knob movements accurately because it 

increases CPU utilisation. Normally you would connect incremental encoders directly to MCU 

pins so you can generate interrupts when the inputs change. Unfortunately, there are not 

enough pins on the microcontroller module for this. 

To avoid this problem, the synthesiser module has an additional microcontroller which can be 

dedicated to decoding the knobs. However, there is not yet a configuration flow that allows you 

to program this microcontroller. So don’t worry about trying to optimise the knob decode for 

now – poor accuracy will not be penalised in coursework marking.  
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7. Communication (CAN bus) 
The core functions of the keyboard include the ability to send messages to other keyboard 

modules that indicate when keys are pressed or released. That way, multiple modules can be 

stacked together to make a larger keyboard with a single interface and audio output. The 

module stacking connectors include a CAN bus for this purpose. 

There is no high-level, Arduino-like API for the CAN bus, so the starter code includes a basic 

library that wraps the relevant HAL module. Only some of the features of the hardware are 

exposed by this library. 

a) Compose the key press message 
A CAN frame contains up to 8 bytes of data and the starter code library has a fixed frame 

size of 8 bytes. We will define a protocol for messages that notify when a key is pressed or 

released: 

Byte Contents 

0 0x50: Key pressed (character ‘P’) 
0x52: Key released (character ‘R’) 

1 Octave number 0-8 

2 Note number 0-11 

3 Unused 

4 Unused 

5 Unused 

6 Unused 

7 Unused 

 For now, declare a global array that will store an outgoing message 

volatile uint8_t TX_Message[8] = {0}; 

Add code to scanKeysTask() that will compare the state of each key to the state detected 

on the previous iteration of the function. If a key has changed state, configure TX_Message 

to indicate which note was pressed or released, for example if the note A (key number 9) 

was pressed and the keyboard was configured to octave 4: 

TX_Message[0] = 'P'; 

TX_Message[1] = 4; 

TX_Message[2] = 9; 

Add code to updateDisplayTask() that will display the latest message. 

u8g2.setCursor(66,30); 

u8g2.print((char) TX_Message[0]); 

u8g2.print(TX_Message[1]); 

u8g2.print(TX_Message[2]); 

u8g2 uses the Arduino print() function, which automatically converts numbers to 

characters. The first byte of the message is already a character code, so it is cast from an 

integer to type char. 

 Test that the latest key press or release is shown on the display. 

b) Send and Receive with polling 
We’ll begin by using polling loops to control send and receive. The STM32duino build of the 

HAL doesn’t build the CAN module by default, so enable it by opening the file: 



2022 V2.2 
 

~\.platformio\packages\framework-

arduinoststm32\cores\arduino\stm32\stm32yyxx_hal_conf.h 

 and add the line: 

#define HAL_CAN_MODULE_ENABLED 

below the group of similar lines. 

Also include the provided CAN library in your main.cpp: 

#include <ES_CAN.h> 

scanKeysTask() includes code that detects a new key press or release and updates 

TX_Message. Add the function call that will send the message over the bus using the CAN 

library: 

CAN_TX(0x123, TX_Message);  

The CAN message ID is fixed as 0x123 for now. 

Poll for received messages in updateDisplayTask(): 

while (CAN_CheckRXLevel()) 

 CAN_RX(ID, RX_Message); 

uint32_t ID and uint8_t RX_Message[8]={0} should be local variables. They will store 

the ID and the data that are received. Change the display code to RX_Message instead of the 

TX_Message. TX_Message can now become a local variable in scanKeysTask(). 

The CAN bus needs to be initialised before it will work. Add the following statements to the 

setup() function: 

CAN_Init(true); 

setCANFilter(0x123,0x7ff); 

CAN_Start(); 

The true argument to CAN_INIT() places the CAN hardware in loopback mode, where it will 

receive and acknowledge its own messages. This is helpful for testing because you don’t 

need to develop on two MCUs simultaneously. 

SetCANFilter() initialises the reception ID filter. Here, it is set up so that only messages 

with the ID 0x123 will be received. The second parameter is the mask, and 0x7ff means that 

every bit of the ID must match the filter for the message to be accepted. 

Test the code. It should do the same as before, but now every message you see on the 

screen is being communicated via the CAN loopback connection. 

You can also attach a second keyboard module and see the messages sent from one to the 

other. Change the argument to CAN_INIT() to false to disable loopback mode and allow 

the MCUs to receive each others’ messages. 

c) Receive queue 
The method of receiving messages is not very good because it uses polling in the display 

thread. Each CAN frame takes less than 1ms to transmit and the hardware can only buffer 

three messages. That means many messages could be missed before the poll statement is 

reached. 
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Even a dedicated thread would not be guaranteed to pick up the messages in time so an 

interrupt is needed to receive every incoming message. The interrupt should be very short, 

so the messages won’t be processed in the ISR, just moved to a larger software buffer. A 

separate decoder task will run as a thread to process the messages on the other side of the 

queue. We will use a thread-safe queue from FreeRTOS, which is designed for passing 

messages between tasks. 

 

Figure 2: Data flow for received messages 

First, create a queue handler as a global variable 

QueueHandle_t msgInQ; 

Initialise it in setup() 

msgInQ = xQueueCreate(36,8); 

The first parameter of the queue is the number of items it can store. A larger queue means 

the message decoding task can have a lower priority since the messages can be allowed to 

queue up for longer. The minimum time to send a CAN frame is around 0.7ms, so a queue 

length of 36 will take at least 25ms to fill. The second parameter is the size of each item in 

bytes. 8 bytes is sufficient to store all the data in one CAN frame. 

Incoming messages will be written into the queue in an ISR: 

void CAN_RX_ISR (void) { 

 uint8_t RX_Message_ISR[8]; 

 uint32_t ID; 

 CAN_RX(ID, RX_Message_ISR); 

 xQueueSendFromISR(msgInQ, RX_Message_ISR, NULL); 

} 

CAN_RX() gets the message data, as before, and xQueueSendFromISR() places the data in 

the queue. Set the ISR to be called whenever a CAN message is received by passing a pointer 

to the relevant library function. Do this in setup(), after CAN_INIT() and before 
CAN_Start(). 

CAN_RegisterRX_ISR(CAN_RX_ISR); 

Create a decode thread with a function decodeTask to process messages on the queue. The 

thread will be initiated not by the tick counter, like before, but by the availability of data on 

the queue: 

xQueueReceive(msgInQ, RX_Message, portMAX_DELAY); 

The call to xQueueReceive() will block and yield the thread to other tasks until a message is 

available in the queue. Place it in the infinite loop in new your decode thread instead of 

vTaskDelayUntil(). Nothing else is needed in this thread function for now. Remove the 

call to CAN_RX() from the display function and initialise the decode thread in setup. 

CAN 
Hardware

Receive 
ISR

Incoming 
Queue

Decode 
Thread
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The call to xQueueReceive() is given the RX_Message array to hold the result. Convert 

RX_Message to a global variable so it can be accessed in both the decode and display tasks. 

This isn’t safe synchronisation because there is no guard against simultaneous access. But it 

will be ok to test with, so check that you can still see the message updating with each key 

press. 

Add code to your decode thread to play notes in response to incoming messages. You will 

need to: 

• Check the first byte to determine if the message indicates a press or release 

• For release messages, set the current step size to zero 

• For press messages, convert the note number to a step size 

• Multiply the step size by 2n-4, where n is the octave number. For example, if the 

octave number is 5 then the step size will be doubled to double the frequency. 

Remember that you can use shift operations to multiply by 2n. 

• Update the current step size. Remember to use an atomic access to update the 

currentStepSize shared global variable. 

If you want to keep the message display on the display, you should protect RX_Message with 

a mutex. You can’t lock the mutex while the decode thread blocks on xQueueReceive(), so 

you’ll need to first place the message in a local array, then copy it to the global array after 

taking the mutex. Use this same mutex to protect access to RX_Message when the display is 

updated. 

d) Transmit queue 
The call to CAN_TX() is not ideal either. If you look in the library you’ll see that this function 

polls until there is space in the outgoing mailbox to place the message in. So if you send a lot 

of messages at the same time, scanKeysTask() might get stuck waiting for the bus to 

become available. It also not a thread safe function and its behaviour could be undefined if 

messages are being sent from two different threads. 

A queue is useful here too so that messages can be queued up for transmission. Multiple 

threads can place messages on the queue because queue functions are thread-safe. 

A new transmit thread is needed to read messages out of the queue and place them in the 

outgoing mailbox. We still want to avoid polling the hardware in the transmit thread, so we 

can use a semaphore to indicate when a message can be accepted. The semaphore will be 

given by an ISR when there is space in the outgoing mailbox, and taken by the transmit 

thread before it loads a message. The RTOS won’t schedule the thread if the semaphore is 

unavailable, so CPU cycles will not be wasted by polling. 
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Figure 3: Data flow for transmitted messages 

First, create another queue msgOutQ for the transmitted messages with a global handle. The 

length of the queue should be 36. Then replace the call to CAN_TX() with the RTOS function 

to place an item on the queue: 

xQueueSend( msgOutQ, TX_Message, portMAX_DELAY); 

The transmit thread will use a semaphore to check when it can place a message in the 

outgoing mailbox. Declare a global handler for it: 

SemaphoreHandle_t CAN_TX_Semaphore; 

The STM32 CAN hardware has three mailbox slots for outgoing messages. The semaphore 

will guard access to this resource and, since three messages can be loaded at once, a 

counting semaphore can be used. The semaphore can be initialised with the value times, 

and this means it can be taken three times by the transmit thread. On the fourth attempt, 

the thread will be blocked until a semaphore is released by the ISR. Initialise the semaphore 

in setup(): 

CAN_TX_Semaphore = xSemaphoreCreateCounting(3,3); 

The maximum count of the semaphore is also three, so it can’t accumulate a count greater 

than the number of mailboxes. 

Create the transmit thread and initialise it as usual. Its infinite loop will have two blocking 

statements because it must obtain a message from the queue and take the semaphore 

before sending the message: 

void CAN_TX_Task (void * pvParameters) { 

 uint8_t msgOut[8]; 

 while (1) { 

 xQueueReceive(msgOutQ, msgOut, portMAX_DELAY); 

  xSemaphoreTake(CAN_TX_Semaphore, portMAX_DELAY); 

  CAN_TX(0x123, msgOut); 

} 

} 

Finally, create the ISR which will give the semaphore each time a mailbox becomes available: 

void CAN_TX_ISR (void) { 

 xSemaphoreGiveFromISR(CAN_TX_Semaphore, NULL); 

} 

Register it in the setup() in the same way as the receive ISR: 

Transmitting 
Thread 

Outgoing 
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Transmit 
Thread CAN Hardware 

Transmit ISR 
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Interrupt Request 
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CAN_RegisterISR_TX(CAN_TX_ISR); 

Check that your messages are still transmitted.  

e) Synthesiser modules should be configurable as senders or receivers. Senders will send 

messages when keys are pressed or released, but they will not generate sound themselves. 

Receivers will not send messages, but they will play notes that are generated from other 

modules as well as their local keys. 

Add a configuration option to define a module as a sender or a receiver. It is easiest to do 

this with preprocessor directives (e.g. #ifdef), but it may be more user friendly to allow the 

mode to be changed at runtime. You could also support auto-configuration with the 

handshake signals to define roles in a multi-module keyboard. There should also be a 

method of choosing the octave number of a module. 

8. Measuring execution time 
A critical instant analysis of the system requires us to know the execution time of every task. On 

a desktop system a profiling tool could help us, but accurate figures require library and operating 

system support. Here we will adopt a more manual method because we need to ensure that we 

find the worst-case execution time of each task independently. The following instructions will 

measure the execution time of scanKeysTask() 

a) To measure the execution time of a single task, the other tasks need to be disabled. In your 

code, comment out the xTaskCreate() function calls for all the threads. Also disable the 

statement that attaches sampleISR to sampleTimer. 

scanKeysTask() should be timed with its worst-case execution time. Modify the function so 

that a key press message is generated for each of the 12 keys on every iteration of the 

function. Disable the while (1) loop and the call to vTaskDelayUntil() so that the task runs 

once, as quickly as possible. 

Initiation intervals of the communication tasks 
The message send task waits for data in a queue, not a fixed time interval, so what is its initiation 

interval for analysis purposes? We need to look at how often items are being placed on the 

queue, which happens in scanKeysTask(). scanKeysTask() runs every 20ms and, in the worst 

case, 12 messages can be generated each time. 

To process 12 messages in 20ms CAN_TX_Task() must complete one iteration every 1.67ms, on 

average. But 1.67ms is a very short initiation interval for a threaded task and it requires a high 

priority. In fact, this analysis is unnecessarily harsh – the task doesn’t need to process a message 

every 1.67ms because they are buffered by the queue. A queue of length 36 would fill up in 

1.67 × 36 = 60ms and the task needs to initiate at least once in this time so it can loop through 

all the queued messages. So the correct initiation interval is 60ms for 36 executions, not 1.67ms 

for 1 execution. 

The decode task is also governed by a 36-item queue. The minimum length of the CAN frames is 

0.7ms so, in the worst case, the queue could fill in 25.2ms. That means the analysis for this task 

should be based on 36 executions with an initiation interval of 25.2ms. 
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Make sure your modifications are reversible and that any potential effects on the execution 

time are as small as possible. You may want to leave the test modifications in as options that 

could be enabled with compiler preprocessor directives (see example below).  

#ifndef NO_SAMPLE_ISR //Don’t attach ISR if NO_SAMPLE_ISR is defined 

sampleTimer->attachInterrupt(sampleISR); 

#endif 

b) Measure execution time over a fixed number of iterations to average out measurement 

inaccuracy. Place a for loop at the end of the setup function that will call scanKeysTask() 

32 times. 

Change the while (1) loop in scanKeysTask() to a for loop that will run for 32 iterations. 

Set the size of msgOutQ to 384 so that every generated message can be queued without 

blocking. 

The for loop can be timed using the Arduino micros() function, which returns the number 

of microseconds since startup. Before the for loop, store the value returned from micros() 

into a local variable. After the for loop, call micros() again and subtract the first value to 

find the difference. Send the difference over the serial port. 

uint32_t startTime = micros(); 

for (int iter = 0; iter < 32; iter++) { 

scanKeysTask() 

} 

Serial.println(micros()-startTime); 

FreeRTOS Run Time Statistics 
FreeRTOS can provide some information on execution time and utilisation without the need to 

isolate tasks, but some setting up is required. You need edit FreeRTOSConfig.h in the FreeRTOS 

library to define a macro that accesses the timer in your system. You could use the Arduino 

micros() function or you could set up a new HardwareTimer instance to give more precision. 

When your system is running, you can call vTaskGetRunTimeStats() to get a task utilisation 

report from the FreeRTOS kernel. The report is placed into a char array that can be written 

directly to the serial port. 

vTaskGetRunTimeStats() gives a breakdown of accumulated execution time per task. To covert 

this into a task execution time per iteration you also need to count the number of iterations of 

each task. This could be done by adding a counter to each task, but be aware that the numbers 

could change between calling vTaskGetRunTimeStats() and reading the task iteration counters. 

Just like the manual method, you need to ensure that execution time measurements are the 

worst case to use them in a critical instant analysis. That may be challenging to achieve with 

every task executing at once, but it could be easier to run subsets of the tasks together rather 

than each one separately. FreeRTOS cannot tell you how much time is spent executing tasks in 

interrupts. 

This page provides more information on run time statistics: https://www.freertos.org/rtos-run-

time-stats.html 

https://www.freertos.org/rtos-run-time-stats.html
https://www.freertos.org/rtos-run-time-stats.html
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Run the code again and you should see the execution time for 32 iterations of 

scanKeysTask() displayed on the serial terminal. It will probably be in the range 50-100µs per 

iteration.  

c) You need a measurement of execution time for every task to complete a critical instant 

analysis. Apply a similar process to the one you used to measure scanKeysTask(), adapting 

it to exercise the worst-case execution time of each task. You’ll need to carry out final 

measurements once your code is finished, so it would be helpful to add compilation options 

that can easily switch between test and normal builds. 

Next Steps 
These lab instructions have worked through the implementation of the coursework core features 

using real-time programming techniques that allow concurrent task execution and thread-safe 

data sharing. 

The advanced features of the coursework are open-ended, so look for new features and 

improvements to the core features that take your work in an interesting direction. The lecture 

slides for Coursework 2 have some suggestions. Whatever you decide to implement, make sure 

that your system will have correct and reliable real time behaviour – and prove this through 

analysis in your report. 


