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Embedded Systems 

Coursework 2 Part 1: Real time systems 
This coursework is based on a music synthesiser. You need to write the embedded software to make 

it work. Several real time tasks will need to be executed concurrently, such as detecting key presses 

and generating the output waveform. 

The first part of the lab notes will lead you through the implementation of some of the core features 

of the synthesiser. This includes: 

• Scanning the key matrix to find out which keys are pressed 

• Using an interrupt to generate a sawtooth wave 

• Using threads to allow the key scan and display tasks to be decoupled and executed 

concurrently 

The inputs to the synthesiser are 12 keys (1 octave), 4 control knobs and a joystick. The outputs are 2 

channels of audio and an OLED display. There is a serial port for communication with a host via USB, 

and a CAN bus that allows multiple modules to be stacked together to make a larger keyboard. 

The keyboard is controlled using a ST NUCLEO-L432KC microcontroller module that contains a 

STM32L432KCU6U processor, which has an Arm Cortex-M4 core. 

 

1. Load the starter code onto the keyboard 
The development flow for the project is based on Platformio, which is an IDE customisation for 

Visual Studio Code. Platformio can target many different embedded platforms using different 

frameworks and libraries. We will use the STM32duino framework, which provides an Arduino-

like environment that makes it easy to access microcontroller hardware features. The overall 

development stack looks like this: 

Stacking 

Connector 

Microcontroller 

(goes here) 

Headphone socket Speaker Display 

Joystick 

Keys 

Knobs 

Reset 
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Get started by installing Platformio and forking the starter code 

a) Install Visual Studio Code, if you don’t have it already, and add Platformio from the website, 

or by searching for it in the VS Code extensions marketplace 

b) Fork the starter code from GitHub. You can use the GitHub extension for VS Code, use git 

from the command line or any other client, or download the zipped project files from 

GitHub. Open the project folder in VS Code 

c) Switch to the Platformio Home tab with the         button on the bottom toolbar and select the 

libraries view. Search for the U8g2 display driver library, select the latest version and add it 

to the project. 

d) Connect the microcontroller module on the synth to your computer with a USB cable. 

e) Compile and the code and flash it to the MCU using the → button on the bottom toolbar 

f) The ‘Hello World’ message should appear on the OLED display. 

g) Open the serial monitor using the        button on the toolbar. Press the reset button on the 

synth (SW19) or the MCU module (B1) and you will see the `Hello World’ message on the 

terminal 

 

ISA/Core: ARM Cortex-M4

Hardware: STMicroelectronics STM32

Compiler: GNU GCC

HAL: CMSIS/STM32Cube

Framework/core libraries: STM32duino

Your code u8g2 FreeRTOS

https://platformio.org/platformio-ide
https://github.com/edstott/ES-synth-starter
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2. Read inputs 
The keys and knobs on the keyboard module are connected to a key matrix, which allows many 

keys to be read with a small number of microcontroller pins 

[RA2,RA1,RA0]  C0 C1 C2 C3 

0 Key C Key C♯ Key D Key D♯ 

1 Key E Key F Key F♯ Key G 

2 Key G♯ Key A Key A♯ Key B 

3 Knob 3 A Knob 3 B Knob 2 A Knob 2 B 

4 Knob 1 A Knob 1 B Knob 0 A Knob 0 B 

Using STM32Cube 
The STM32duino framework is useful because you can use familiar functions to access hardware 

and get access to useful libraries. However, it does not include libraries for all the hardware 

modules and you may need to edit the framework source code to unlock advanced features, 

such as DMA and the full DAC resolution. 

STM32duino is built on top of STM32Cube, which is the manufacturer’s hardware abstraction 

layer (HAL) for STM32 microcontrollers. You can access the HAL in STM32duino just by including 

the relevant header files, but a few things require edits to the STM32duino files. 

You can also build a STM32Cube from scratch. You can compile STM32Cube projects in 

Platformio, but you will probably need to start by generating initialisation code using 

STM32CubeMX, which is a GUI-based tool. You can also use STM32CubeIDE, which is the 

manufacturer’s Eclipse-based IDE, as an alternative to VS Code and Platformio. 

The libraries used in these lab instructions are based on STM32duino, so they won’t work with 

STM32Cube. You will need to locate or create ports for libraries, for example by defining 

callbacks for U8g2 to access I2C and GPIO hardware as described here: 

https://github.com/olikraus/u8g2/wiki/Porting-to-new-MCU-platform 
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https://www.st.com/en/ecosystems/stm32cube.html
https://www.st.com/en/development-tools/stm32cubemx.html
https://www.st.com/en/development-tools/stm32cubeide.html
https://github.com/olikraus/u8g2/wiki/Porting-to-new-MCU-platform
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5 Knob 2 S Knob 3 S Joystick S West Detect 

6 Knob 0 S Knob 1 S Unused East Detect 

7 Unused 

a) Read a single row of the switch matrix 

i. Write a function that will read the inputs from the four columns of the switch matrix (C0, 

C1, C2, C3) and return the four bits concatenated together as a single byte. 

uint8_t readCols(){ 

… 

} 

Add lines to the start of your function to set each row select address (RA0, RA1, RA2) low 

and the row select enable (REN) high. This will drive R0 low and allow you to read Row 0, 

notes C–D♯. Use the function DigitalWrite() to set the outputs and DigitalRead() to 

read the inputs. 

ii. Modify the main loop of the function to call the readCols() function and print the result 

on the OLED display at coordinates (2,20).  

uint8_t keys = readCols(); 

u8g2.setCursor(2,20); 

u8g2.print(keys,HEX);  

You will need to replace the existing statement u8g2.print(count++);, which prints the 

iteration count 

iii. Upload and test your code. Pressing each of the four left-most keys of the keyboard should 

change the number that is displayed on the screen. The keys read as logic 0 when they are 

pressed so if you press all four of the keys the number will change to 0. 

b) Read all the keys 

i. Write a function that will select a given row of the switch matrix by setting the value of 

each row select address pin. Disable (set low) the row select enable before the row select 

address pins are being changed, then enable it again at the end of the function. This 

prevents glitches as the address pins are changed. 

void setRow(uint8_t rowIdx){ 

… 

} 

Remove the lines that control the row select addresses and row select enable from the 

readCols() function. 

ii. In the loop() function, create an array that will store the reading from each row in the 

matrix 

uint8_t keyArray[7]; 

Place a for loop around your call to readCols(). This will be the key scanning loop. It 

should loop over the row numbers 0 to 2. For each row, it should set the row select 

address then read the columns. The result should be stored in keyArray using the row 

number as the array index.  
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keyArray has seven elements because that is the overall size of the key matrix. But we’ll 

only read rows 0 to 2 for now because that range covers the 12 music keys. 

The switch matrix columns take some time to switch from logic 0 to logic 1 when the row 

select changes due to parasitic capacitance. Add a small delay inside your loop between 

the calls to setRow() and readCols(): 

delayMicroseconds(3); 

iii. Modify the display code to print the contents of keyArray indices 0, 1 and 2. Format the 

data in hexadecimal format so that each row is represented by a single digit on the display. 

Upload the code and you should now see a 3-digit hexadecimal number representing the 

state of all 12 keys. Check that each key press is detected. 

3.  Generate Sound 
The next basic function of the keyboard is to generate sound. We will begin by generating a 

sawtooth wave with a frequency according to the key that is pressed. 

Most digital systems for generating and processing signals use a constant sample rate: we will 

use a sample rate fs of 22kHz. A fixed sample rate means that we can change the frequency of 

the note by changing the number of samples that make up one period of the waveform. 

Complete microcontroller pin assignments 
Starter code name STM32duino name MCU pin Function 
RA0_PIN D3 PB0 Row select address bit 0 
RA1_PIN D6 PB1 Row select address bit 1 
RA2_PIN D12 PB4 Row select address bit 2 
REN_PIN A5 PA6 Row select enable 
C0_PIN A2 PA3 Key matrix column 0 
C1_PIN D9 PA8 Key matrix column 1 
C2_PIN A6 PA7 Key matrix column 2 
C3_PIN D1 PA9 Key matrix column 3 
OUT_PIN D11 PB5 Multiplexed output for display enable and 

handshaking signals 
OUTL_PIN A4 PA5 Analogue audio output left 
OUTR_PIN A3 PA4 Analogue audio output right 
JOYX_PIN A0 PA1 Analogue joystick input X 
JOYY_PIN A1 PA0 Analogue joystick input Y 
 D4 PB7 Display I2C SDA 
 D5 PB6 Display I2C SCL 
 D10 PA11 CAN bus RXD 
 D2 PA12 CAN bus TXD 
LED_BUILTIN LED_BUILTIN PB3 LED LD3 
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Therefore, we need to convert each note frequency into a step size for a phase accumulator. 

Over time, the phase accumulator will count up until it overflows and starts again. Each 

overflow of the phase accumulator represents one period of the output waveform. Increasing 

the step size causes the phase accumulator to overflow after fewer sample periods and 

therefore the frequency is higher. 

We will use a 32-bit signed phase accumulator because that is the word size of the CPU. That 

means it will overflow to – (231) when it reaches the value 231. Then, the step size S required to 

achieve a certain frequency f is given by: 

S =
232f

fs
 

a) Define an array of the phase step sizes required for each of the 12 notes of your keyboard. 

Since these values will be constants, use a const array initialiser of the form: 

const int32_t stepSizes [] = { … }; 

Configure your keyboard to use equal temperament, which means that the difference in 

frequency between adjacent notes is a factor of √2
12

. Therefore, a span of 12 keys results in 

a doubling of frequency, which is one octave. Base your tuning on a frequency of 440Hz for 

the note A, which is the 10th key from the left of your keyboard and element 9 of your notes 

array. 

 

b) Add code to your main loop that will check the state of each key in keyArray and look up 

the corresponding step size in the stepSizes array if the key is pressed. Store the result in a 

global variable: 

volatile int32_t currentStepSize; 

Small step – low frequency Large step – high frequency 

Constant 

sample 

rate 

Phase 
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This variable will be accessed by more than one concurrent task, so it is declared with the 

keyword volatile. This instructs the compiler to access the variable in memory each time it 

appears in the source code. Otherwise, the compiled code may keep a copy of the variable in 

a CPU register and miss updates made by other tasks. 

We will only be able to play one note at once at first, so if multiple keys are pressed just use 

the step size from the last key to be checked. If no keys are pressed then the step size should 

be set to zero. 

Add information to the OLED display to show which note is selected. 

 

c) Write a new function that will update the phase accumulator and set the analogue output 

voltage at each sample interval: 

void sampleISR() { 

… 

} 

It will be an interrupt service routine, which means that it cannot have arguments or a return 

value. The function will be triggered by an interrupt 22,000 times per second. It will add 

currentStepSize to the phase accumulator to generate the output waveform. Define the 

phase accumulator as a static local variable, so that its value will be stored between 

successive calls of sampleISR(): 

static int32_t phaseAcc = 0; 

phaseAcc += currentStepSize; 

The conversion from the phase accumulator to a sawtooth wave output is quite simple 

because the value of a sawtooth function is directly proportional to the phase. First, we will 

right-shift (divide by 2n) so that its range will be reduced to −(27) ≤ 𝑣 ≤ 27 − 1. 

int32_t Vout = phaseAcc >> 24; 

The Arduino analogWrite() function has a range of 0-255: 0 produces 0V and 255 produces 

3.3V. Therefore, we need to add a DC offset so that an audio value of 0 produces a voltage of 

1.65V 

analogWrite(OUTR_PIN, Vout + 128); 

Different waveform functions will require more maths to convert phase into output voltage. 

For example, a sine wave would require the calculation of a sin function. Whatever the 

waveform, it’s best to define the function to have a midpoint of zero and then add the DC 
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offset in the final step. That makes it easier to add and multiply signals and keep the correct 

range of values. 

d) A timer is needed to trigger the interrupt that will call sampleISR(). Create a timer in the 

setup function using the stm32duino library class HardwareTimer: 

TIM_TypeDef *Instance = TIM1; 

HardwareTimer *sampleTimer = new HardwareTimer(Instance); 

The timer is configured by setting the period, attaching the ISR and starting the timer, also in 

the setup function: 

sampleTimer->setOverflow(22000, HERTZ_FORMAT); 

sampleTimer->attachInterrupt(sampleISR); 

sampleTimer->resume(); 

The documentation for the library is here: 

https://github.com/stm32duino/wiki/wiki/HardwareTimer-library 

e) Test your code. You should hear a note from the speaker when you press each key. You 

could test that the notes are correct with a guitar tuner app if you like. 

f) Even though the code works, there is a possible synchronisation bug. The currentStepSize 

variable could be read in sampleISR() when it has been partially modified in the main loop. 

The first improvement is to reduce the number of accesses to currentStepSize in the main 

loop to a single store operation. You were asked to check each key and update 

currentStepSize if the key is pressed. The code can be improved by using a local variable 

for the step size until all the keys have been checked. Then, when the final value is known, 

the local variable can be copied to currentStepSize so that the global variable is only 

accessed once. 

Next, we can force the write to currentStepSize in the main loop to be an atomic 

operation using a built-in compiler function. The variable is a 32-bit integer so any write is 

likely to be atomic by default because it can be completed in a single CPU operation. 

However, using an atomic store function makes certain and shows anyone who maintains 

the code in future that the operation is intended to be atomic: 

Warning: there is no hardware volume control and headphones may be very loud. Do not use 

headphones until you have tested the loudness with the headphones away from your ears. 

Numerically-controlled Oscillator 
You may wonder if it was necessary to use a 32-bit phase accumulator if only 8 bits are needed to 

create the waveform. The technique is known as a numerically controlled oscillator and it allows 

a more accurate frequency than would be possible with an 8-bit accumulator. The down 

sampling from the 32-bit accumulator to the 8-bit output means that each individual cycle of the 

waveform may have an inaccurate period, but that error is averaged out over multiple cycles. 

The result is phase jitter, which is less obvious than a continuous frequency error. 

If you try to generate very high tones you will hear aliased frequency components arising from 

the periodicity of the jitter, particularly for discontinuous waveforms like the sawtooth. This is a 

limitation of the 22kHz sample rate. 

 

https://github.com/stm32duino/wiki/wiki/HardwareTimer-library
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__atomic_store_n(&currentStepSize, localCurrentStepSize, __ATOMIC_RELAXED); 

This function stores localCurrentStepSize in currentStepSize as an atomic operation. 

The parameter __ATOMIC_RELAXED indicates that we need an atomic store, but we’re not 

concerned about the ordering of other instructions that don’t use the two variables in 

question. Refer to the documentation for more information about this parameter. 

A complimentary call to __atomic_load_n() would be necessary if currentStepSize was 

read in another thread. However, since the variable is read in an ISR, an atomic operation is 

unneeded because the ISR cannot be interrupted by anything else. 

The compiler documentation for built-in atomic operations is here: 

https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html 

4. Split key scanning and display update tasks with threading 
Currently, the keys are read once every execution of the main loop. The main loop is also used to 

update the display, which is not ideal because it forces these tasks to have the same initiation 

interval. We will separate these two processes into different tasks by creating a thread to run 

the key scanning task. 

a) Move all your code for scanning the keyboard into a single function: 

void scanKeysTask(void * pvParameters) { 

… 

} 

The function should do the following: 

• Loop through the rows of the key matrix 

• Read the columns of the matrix and store the result in keyArray 

• Look up the phase step size for the key that is pressed and update currentStepSize 

You will need to make keyArray a volatile, global variable so that it can be accessed by both 

scanKeysTask() and the main loop. 

Test your code by calling scanKeysTask() in the main loop. The parameter pvParameters 

will be used by the thread initialiser – just set it to NULL in your call. Everything should work 

as before. 

b) Install the ‘STM32duino FreeRTOS’ library with the Platformio library manager. Include its 

header file at the start of your source file: 

#include <STM32FreeRTOS.h> 

Now we will make scanKeysTask() an independent thread. Convert it to an infinite loop by 

wrapping contents of the function in a while loop: 

while (1) { 

… 

} 

Add the following code into your setup() function to initialise and run the thread: 

TaskHandle_t scanKeysHandle = NULL; 

xTaskCreate( 

https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html
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scanKeysTask,  /* Function that implements the task */ 

"scanKeys",  /* Text name for the task */ 

64,        /* Stack size in words, not bytes */ 

NULL,   /* Parameter passed into the task */ 

1,   /* Task priority */ 

&scanKeysHandle );  /* Pointer to store the task handle */ 

The API reference for this function call is here: https://www.freertos.org/a00125.html. We 

have used a stack size of 64 words (256 bytes) for the thread. The stack needs to be large 

enough to store all the local variables of the functions called in the thread. 

Add this function call at the end of the setup function to start the RTOS scheduler: 

vTaskStartScheduler(); 

Remove the call to scanKeysTask() from the main loop. 

c) The thread will need to execute at a constant rate, which will be the sample rate of our 

keyboard. We can use the RTOS function vTaskDelayUntil() to do this – it blocks 

execution until a certain time has passed since the last time the function was completed. 

Declare two local variables in scanKeysTask(), before the loop: 

const TickType_t xFrequency = 50/portTICK_PERIOD_MS; 

TickType_t xLastWakeTime = xTaskGetTickCount(); 

xFrequency will be the initiation interval of the task. It is given in units of RTOS scheduler 

ticks and we can use the constant portTICK_PERIOD_MS to convert a time in milliseconds to 

scheduler ticks. Here we have set the initiation interval to 50ms. 

xLastWakeTime will store the time (tick count) of the last initiation. We initialise it with the 

API call xTaskGetTickCount() to get the current time. In subsequent iterations this variable 

will be updated by the call to vTaskDelayUntil(). 

Now you can add the blocking call to vTaskDelayUntil() at the start of your infinite loop: 

vTaskDelayUntil( &xLastWakeTime, xFrequency ); 

https://www.freertos.org/a00125.html
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This function call blocks execution of the thread until xFrequency ticks have happened since 

the last execution of the loop. The API reference for this function is here: 

https://www.freertos.org/vtaskdelayuntil.html. As an RTOS function, it places the thread 

into the waiting state and allows the CPU to do other tasks until it is time to run the function 

again.  

d) Test your code. It should behave as before. You may have noticed another potential 

synchronisation bug with the keyArray array. keyArray cannot be treated as a simple 

atomic variable because it is a multi-word array. We will solve the problem in the next 

section using a mutex. 

e) The main loop is usually left empty in FreeRTOS systems. Create another thread to run the 

display update task (name the function displayUpdateTask()) with a 100ms initiation 

interval. Remove the original, polling-based rate control implemented with if (millis() > 

next) {…} and replace it with an infinite loop and a call to vTaskDelayUntil(). Since 

100ms is longer than 50ms, set the priority of the display update thread to 1 and the key 

scanning thread to 2 (higher priority).  Use a stack size of 256 words for 

displayUpdateTask(). Your loop() function should now be empty. 

How much stack? 
The stack stores the arguments, local variables and return pointers for functions that are called. 

Each thread has its own stack. The total stack required depends on the worst-case combination 

of function calls. Recursive functions are a bad idea when the stack size is fixed because the 

worst-case stack requirement depends on the data and it can be hard to determine. There are 

two methods to determine the amount of stack to allocate to a thread: 

1. Examine the compiler output to find the stack footprint of every function. Then, add 

together the combinations of functions that could all be in progress at the same time 

inside one thread. The use of libraries makes this process more difficult because they 

might have their own chains of function calls that are hard to inspect. The Inspect view in 

Platformio can be used to explore memory usage in your project. 

2. Find it at runtime. The FreeRTOS function uxTaskGetStackHighWaterMark() returns 

the largest amount of stack that a thread has ever needed. You can allocate a large stack 

at first and then optimise when the code is working. You need to ensure that all the code 

has been exercised before you report the stack high water mark. 

If a thread in your system runs out of stack the RTOS will enter an error state in an infinite loop. 

The LED on the microcontroller module will flash in bursts of 4 flashes. 

You can reduce the stack requirement by using dynamically allocated memory with new or 

malloc(). Dynamic memory comes from a single pool (the heap), so it is more flexible than the 

per-thread allocation of stack memory. 

https://www.freertos.org/vtaskdelayuntil.html

