
2022 V2.2

Embedded Systems

Coursework 2 Part 2: Real time systems
In the first part of the lab, you wrote code to make the synthesiser play notes with tasks in an

interrupt and two threads. This time we will develop the system further and complete the remaining

core goals:

• Use a mutex and queue for thread-safe data sharing

• Decode the knobs and implement a volume control

• Relay key presses to another keyboard module using the CAN bus

• Measure execution time of a task

5. Add a mutex
Part 1 of the lab notes left a synchronisation bug. The array keyArray is now a global variable

and it is accessed by both the main loop and scanKeysTask(). It cannot be accessed atomically

because it is an array of multiple bytes – it requires multiple operations to read and write. Since

all the accesses to the array are from threads, not interrupts, it can be protected by a mutex.

a) Declare a global handle for a FreeRTOS mutex that can be used by different threads to

access the mutex object:

SemaphoreHandle_t keyArrayMutex;

FreeRTOS uses the same data structure for semaphores and mutexes, so the handle type

and function names overlap. The main difference between a semaphore and a mutex is the

way they are used. A mutex is ‘taken’ (locked) by a thread while it accesses the protected

data or resource, then ‘given’ (unlocked) when it is finished. All threads that access the

resource take then give the mutex in the same way.

A semaphore is used asymmetrically – one thread tries to take the semaphore, but it is

blocked until a different thread gives it. A single thread will only take or give a particular

semaphore, never both.

Create the mutex and assign its handle in the setup function, before the scheduler is started:

keyArrayMutex = xSemaphoreCreateMutex();

The reference for this function is here: https://www.freertos.org/CreateMutex.html

b) Now you can take the mutex while keyArray is accessed using the appropriate functions:

xSemaphoreTake(keyArrayMutex, portMAX_DELAY);

… //Access keyArray here

xSemaphoreGive(keyArrayMutex);

Guard accesses to keyArray in both scanKeysTask() and displayUpdateTask(). The

parameter portMAX_DELAY causes xSemaphoreTake() to wait indefinitely for the mutex to

become unlocked. You can use a finite time, expressed in scheduler ticks, but then you

would also need to test if xSemaphoreTake() was successful and deal with a timeout

appropriately.

https://www.freertos.org/CreateMutex.html

2022 V2.2

c) Test your code. It should work as before.

6. Knobs
The knobs generate a quadrature signal as they rotate. We can find the amount of rotation by

counting the state changes and we can find the direction of rotation from the ordering of state

changes.

The process can be represented as a state transition table. We can determine if a rotation has

happened by comparing the current state to the previous state:

Using mutexes
You have a choice of how often to lock the mutex while different elements of keyArray are

accessed. You could take the mutex separately when every element is read or written. That

would mean the array as a whole is not synchronised – the display thread could read part of the

array from the latest scan of the key matrix and part from the previous scan. Maybe that

wouldn’t be a problem just to display the contents but in other applications this

desynchronisation could very bad.

An alternative is to lock the mutex once while the entire array is accessed. However, that means

the mutex could be locked for a relatively long time, and task prioritisation could be affected. For

example, the key scan loop contains delays to allow the external wiring to settle and the mutex

would be locked all this time.

A better approach may be to create local copies of the array in each function that accesses it.

You can use the C function memcpy() for this purpose. Then the mutex would only be locked

while the copy is taking place, and not the processing. The downside of this method is that extra

memory and CPU execution time are required to make the copies. It would be impractical for

large arrays.

The correct approach will depend on the application. There will always be complexity when

concurrent tasks are required to spend a significant portion of their execution time accessing

shared data.

Clockwise

One
detent

A

B

Anticlockwise

A

B

Rotation

Figure 1: Quadrature signals indicate rotation direction

2022 V2.2

a) Decode knob 3 (the right-hand knob) into a rotation variable by comparing the current state

and previous state of the appropriate bits in the key matrix. You will need to extend your key

matrix scan to include row 3. The A and B signals for knob 3 can be read in columns 0 and 1

of row 3. The decoding process should happen every time the key matrix is scanned so

include it in scanKeysTask().

Store the previous state of the A and B signals in a local variable. Assign the current state to

the previous state once decoding is complete so that it is ready to use as the previous state

in the next iteration.

The result of the knob decode is a rotation variable that keeps track of the knob position.

Create this variable as a global variable so it can be accessed by other threads. Add a

printout of the variable to your display and check that you can count rotation of the knob.

You can protect access to this variable with keyArrayMutex since it will be accessed at the

same time as keyArray.

The rotation variable should increase or decrease by 2 for every detent of rotation.

a) You will probably notice that the knob decode doesn’t work very well when you turn the

knob quickly. The problem is the key matrix isn’t scanned quickly enough to detect the

transient states, when the inputs {B,A} are briefly at 01 or 10 between detents of the knob.

One partial solution is to increase the sample rate of the key matrix. Try changing the

initiation interval of scanKeysTask() from 50ms to 20ms. That should improve the accuracy

but it still won’t be fast enough to capture very fast knob rotation.

Another improvement can be made by making a better effort of interpreting the ‘impossible’

state transitions, when both A and B change at the same time. These transitions are likely to

be detected if the intermediate states are missed. On their own, an impossible transition

does not tell you the direction the knob rotated but you can guess by assuming the direction

was the same as the last legal transition. Increment or decrement the rotation by 2 in case of

an impossible transition, which assumes that one intermediate state was missed. For

example:

Previous
{B,A}

Current
{B,A}

Rotation
variable

00 00 No change

00 01 +1

00 10 -1

00 11 Ignore impossible transition

01 00 -1

01 01 No change

01 10 Ignore impossible transition

01 11 +1

10 00 +1

10 01 Ignore impossible transition

10 10 No change

10 11 -1

11 00 Ignore impossible transition

11 01 -1

11 10 +1

11 11 No change

2022 V2.2

Iteration of
scanKeysTask()

Previous
{B,A}

Current
{B,A}

Rotation
variable

1 N/A 00 No change

2 00 01 +1 Normal change

3 01 11 +1 Normal change

4 11 00 +2 Missed state, use same sign as before

b) The knob can be used to implement a simple volume control. First, add limits to your knob

decoder so the maximum rotation can be 16 and the minimum can be 0.

Audio volume controls usually adopt a log taper, which means the output amplitude varies

non-linearly with knob position. We will implement a simple log taper by right-shifting

(dividing by 2n) the output value by an amount proportional to the knob position as it’s

calculated in sampleISR():

Vout = Vout >> (8 - knob3Rotation/2);

If the volume is 16, there is no change to the original function. If the volume is reduced to

14, the output value is right-shifted by one and halved. If the volume is zero, the right shift

by 8 means that the output value is always ±1. knob3Rotation is divided by 2 because the

variable changes by 2 for every knob detent.

Test the volume control. You should find that steps in the volume control are approximately

consistent in the perceived loudness.

c) The mutex keyArrayMutex, which you used to protect the variable knob3Rotation, cannot

be locked by sampleISR() because it is an interrupt. Maintain correct data synchronisation

by changing the modification to knob3Rotation in scanKeysTask() to an atomic access.

Make sure there is no way the ISR can read a rotation value that’s temporarily outside the

permitted bounds, for example if the rotation is incremented then checked against the

maximum.

d) (Advanced) The code will get messy if the knob decoder is replicated for the three other

knobs. Implement a knob class with methods that allow you to:

• Update the rotation value using the latest state of the key matrix

• Set upper and lower limits

• Read the current rotation value

Make the class thread safe, meaning that all public methods behave as reenterant functions

and they can be called from concurrent tasks without need needing additional

synchronisation locks.

Knob accuracy
It’s not ideal to use a high sample rate to detect the knob movements accurately because it

increases CPU utilisation. Normally you would connect incremental encoders directly to MCU

pins so you can generate interrupts when the inputs change. Unfortunately, there are not

enough pins on the microcontroller module for this.

To avoid this problem, the synthesiser module has an additional microcontroller which can be

dedicated to decoding the knobs. However, there is not yet a configuration flow that allows you

to program this microcontroller. So don’t worry about trying to optimise the knob decode for

now – poor accuracy will not be penalised in coursework marking.

2022 V2.2

7. Communication (CAN bus)
The core functions of the keyboard include the ability to send messages to other keyboard

modules that indicate when keys are pressed or released. That way, multiple modules can be

stacked together to make a larger keyboard with a single interface and audio output. The

module stacking connectors include a CAN bus for this purpose.

There is no high-level, Arduino-like API for the CAN bus, so the starter code includes a basic

library that wraps the relevant HAL module. Only some of the features of the hardware are

exposed by this library.

a) Compose the key press message
A CAN frame contains up to 8 bytes of data and the starter code library has a fixed frame

size of 8 bytes. We will define a protocol for messages that notify when a key is pressed or

released:

Byte Contents

0 0x50: Key pressed (character ‘P’)
0x52: Key released (character ‘R’)

1 Octave number 0-8

2 Note number 0-11

3 Unused

4 Unused

5 Unused

6 Unused

7 Unused

 For now, declare a global array that will store an outgoing message

volatile uint8_t TX_Message[8] = {0};

Add code to scanKeysTask() that will compare the state of each key to the state detected

on the previous iteration of the function. If a key has changed state, configure TX_Message

to indicate which note was pressed or released, for example if the note A (key number 9)

was pressed and the keyboard was configured to octave 4:

TX_Message[0] = 'P';

TX_Message[1] = 4;

TX_Message[2] = 9;

Add code to updateDisplayTask() that will display the latest message.

u8g2.setCursor(66,30);

u8g2.print((char) TX_Message[0]);

u8g2.print(TX_Message[1]);

u8g2.print(TX_Message[2]);

u8g2 uses the Arduino print() function, which automatically converts numbers to

characters. The first byte of the message is already a character code, so it is cast from an

integer to type char.

 Test that the latest key press or release is shown on the display.

b) Send and Receive with polling
We’ll begin by using polling loops to control send and receive. The STM32duino build of the

HAL doesn’t build the CAN module by default, so enable it by opening the file:

2022 V2.2

~\.platformio\packages\framework-

arduinoststm32\cores\arduino\stm32\stm32yyxx_hal_conf.h

 and add the line:

#define HAL_CAN_MODULE_ENABLED

below the group of similar lines.

Also include the provided CAN library in your main.cpp:

#include <ES_CAN.h>

scanKeysTask() includes code that detects a new key press or release and updates

TX_Message. Add the function call that will send the message over the bus using the CAN

library:

CAN_TX(0x123, TX_Message);

The CAN message ID is fixed as 0x123 for now.

Poll for received messages in updateDisplayTask():

while (CAN_CheckRXLevel())

 CAN_RX(ID, RX_Message);

uint32_t ID and uint8_t RX_Message[8]={0} should be local variables. They will store

the ID and the data that are received. Change the display code to RX_Message instead of the

TX_Message. TX_Message can now become a local variable in scanKeysTask().

The CAN bus needs to be initialised before it will work. Add the following statements to the

setup() function:

CAN_Init(true);

setCANFilter(0x123,0x7ff);

CAN_Start();

The true argument to CAN_INIT() places the CAN hardware in loopback mode, where it will

receive and acknowledge its own messages. This is helpful for testing because you don’t

need to develop on two MCUs simultaneously.

SetCANFilter() initialises the reception ID filter. Here, it is set up so that only messages

with the ID 0x123 will be received. The second parameter is the mask, and 0x7ff means that

every bit of the ID must match the filter for the message to be accepted.

Test the code. It should do the same as before, but now every message you see on the

screen is being communicated via the CAN loopback connection.

You can also attach a second keyboard module and see the messages sent from one to the

other. Change the argument to CAN_INIT() to false to disable loopback mode and allow

the MCUs to receive each others’ messages.

c) Receive queue
The method of receiving messages is not very good because it uses polling in the display

thread. Each CAN frame takes less than 1ms to transmit and the hardware can only buffer

three messages. That means many messages could be missed before the poll statement is

reached.

2022 V2.2

Even a dedicated thread would not be guaranteed to pick up the messages in time so an

interrupt is needed to receive every incoming message. The interrupt should be very short,

so the messages won’t be processed in the ISR, just moved to a larger software buffer. A

separate decoder task will run as a thread to process the messages on the other side of the

queue. We will use a thread-safe queue from FreeRTOS, which is designed for passing

messages between tasks.

Figure 2: Data flow for received messages

First, create a queue handler as a global variable

QueueHandle_t msgInQ;

Initialise it in setup()

msgInQ = xQueueCreate(36,8);

The first parameter of the queue is the number of items it can store. A larger queue means

the message decoding task can have a lower priority since the messages can be allowed to

queue up for longer. The minimum time to send a CAN frame is around 0.7ms, so a queue

length of 36 will take at least 25ms to fill. The second parameter is the size of each item in

bytes. 8 bytes is sufficient to store all the data in one CAN frame.

Incoming messages will be written into the queue in an ISR:

void CAN_RX_ISR (void) {

 uint8_t RX_Message_ISR[8];

 uint32_t ID;

 CAN_RX(ID, RX_Message_ISR);

 xQueueSendFromISR(msgInQ, RX_Message_ISR, NULL);

}

CAN_RX() gets the message data, as before, and xQueueSendFromISR() places the data in

the queue. Set the ISR to be called whenever a CAN message is received by passing a pointer

to the relevant library function. Do this in setup(), after CAN_INIT() and before
CAN_Start().

CAN_RegisterRX_ISR(CAN_RX_ISR);

Create a decode thread with a function decodeTask to process messages on the queue. The

thread will be initiated not by the tick counter, like before, but by the availability of data on

the queue:

xQueueReceive(msgInQ, RX_Message, portMAX_DELAY);

The call to xQueueReceive() will block and yield the thread to other tasks until a message is

available in the queue. Place it in the infinite loop in new your decode thread instead of

vTaskDelayUntil(). Nothing else is needed in this thread function for now. Remove the

call to CAN_RX() from the display function and initialise the decode thread in setup.

CAN
Hardware

Receive
ISR

Incoming
Queue

Decode
Thread

2022 V2.2

The call to xQueueReceive() is given the RX_Message array to hold the result. Convert

RX_Message to a global variable so it can be accessed in both the decode and display tasks.

This isn’t safe synchronisation because there is no guard against simultaneous access. But it

will be ok to test with, so check that you can still see the message updating with each key

press.

Add code to your decode thread to play notes in response to incoming messages. You will

need to:

• Check the first byte to determine if the message indicates a press or release

• For release messages, set the current step size to zero

• For press messages, convert the note number to a step size

• Multiply the step size by 2n-4, where n is the octave number. For example, if the

octave number is 5 then the step size will be doubled to double the frequency.

Remember that you can use shift operations to multiply by 2n.

• Update the current step size. Remember to use an atomic access to update the

currentStepSize shared global variable.

If you want to keep the message display on the display, you should protect RX_Message with

a mutex. You can’t lock the mutex while the decode thread blocks on xQueueReceive(), so

you’ll need to first place the message in a local array, then copy it to the global array after

taking the mutex. Use this same mutex to protect access to RX_Message when the display is

updated.

d) Transmit queue
The call to CAN_TX() is not ideal either. If you look in the library you’ll see that this function

polls until there is space in the outgoing mailbox to place the message in. So if you send a lot

of messages at the same time, scanKeysTask() might get stuck waiting for the bus to

become available. It also not a thread safe function and its behaviour could be undefined if

messages are being sent from two different threads.

A queue is useful here too so that messages can be queued up for transmission. Multiple

threads can place messages on the queue because queue functions are thread-safe.

A new transmit thread is needed to read messages out of the queue and place them in the

outgoing mailbox. We still want to avoid polling the hardware in the transmit thread, so we

can use a semaphore to indicate when a message can be accepted. The semaphore will be

given by an ISR when there is space in the outgoing mailbox, and taken by the transmit

thread before it loads a message. The RTOS won’t schedule the thread if the semaphore is

unavailable, so CPU cycles will not be wasted by polling.

2022 V2.2

Figure 3: Data flow for transmitted messages

First, create another queue msgOutQ for the transmitted messages with a global handle. The

length of the queue should be 36. Then replace the call to CAN_TX() with the RTOS function

to place an item on the queue:

xQueueSend(msgOutQ, TX_Message, portMAX_DELAY);

The transmit thread will use a semaphore to check when it can place a message in the

outgoing mailbox. Declare a global handler for it:

SemaphoreHandle_t CAN_TX_Semaphore;

The STM32 CAN hardware has three mailbox slots for outgoing messages. The semaphore

will guard access to this resource and, since three messages can be loaded at once, a

counting semaphore can be used. The semaphore can be initialised with the value times,

and this means it can be taken three times by the transmit thread. On the fourth attempt,

the thread will be blocked until a semaphore is released by the ISR. Initialise the semaphore

in setup():

CAN_TX_Semaphore = xSemaphoreCreateCounting(3,3);

The maximum count of the semaphore is also three, so it can’t accumulate a count greater

than the number of mailboxes.

Create the transmit thread and initialise it as usual. Its infinite loop will have two blocking

statements because it must obtain a message from the queue and take the semaphore

before sending the message:

void CAN_TX_Task (void * pvParameters) {

 uint8_t msgOut[8];

 while (1) {

 xQueueReceive(msgOutQ, msgOut, portMAX_DELAY);

 xSemaphoreTake(CAN_TX_Semaphore, portMAX_DELAY);

 CAN_TX(0x123, msgOut);

}

}

Finally, create the ISR which will give the semaphore each time a mailbox becomes available:

void CAN_TX_ISR (void) {

 xSemaphoreGiveFromISR(CAN_TX_Semaphore, NULL);

}

Register it in the setup() in the same way as the receive ISR:

Transmitting
Thread

Outgoing
queue

Transmit
Thread CAN Hardware

Transmit ISR

Semaphore

Interrupt Request

2022 V2.2

CAN_RegisterISR_TX(CAN_TX_ISR);

Check that your messages are still transmitted.

e) Synthesiser modules should be configurable as senders or receivers. Senders will send

messages when keys are pressed or released, but they will not generate sound themselves.

Receivers will not send messages, but they will play notes that are generated from other

modules as well as their local keys.

Add a configuration option to define a module as a sender or a receiver. It is easiest to do

this with preprocessor directives (e.g. #ifdef), but it may be more user friendly to allow the

mode to be changed at runtime. You could also support auto-configuration with the

handshake signals to define roles in a multi-module keyboard. There should also be a

method of choosing the octave number of a module.

8. Measuring execution time
A critical instant analysis of the system requires us to know the execution time of every task. On

a desktop system a profiling tool could help us, but accurate figures require library and operating

system support. Here we will adopt a more manual method because we need to ensure that we

find the worst-case execution time of each task independently. The following instructions will

measure the execution time of scanKeysTask()

a) To measure the execution time of a single task, the other tasks need to be disabled. In your

code, comment out the xTaskCreate() function calls for all the threads. Also disable the

statement that attaches sampleISR to sampleTimer.

scanKeysTask() should be timed with its worst-case execution time. Modify the function so

that a key press message is generated for each of the 12 keys on every iteration of the

function. Disable the while (1) loop and the call to vTaskDelayUntil() so that the task runs

once, as quickly as possible.

Initiation intervals of the communication tasks
The message send task waits for data in a queue, not a fixed time interval, so what is its initiation

interval for analysis purposes? We need to look at how often items are being placed on the

queue, which happens in scanKeysTask(). scanKeysTask() runs every 20ms and, in the worst

case, 12 messages can be generated each time.

To process 12 messages in 20ms CAN_TX_Task() must complete one iteration every 1.67ms, on

average. But 1.67ms is a very short initiation interval for a threaded task and it requires a high

priority. In fact, this analysis is unnecessarily harsh – the task doesn’t need to process a message

every 1.67ms because they are buffered by the queue. A queue of length 36 would fill up in

1.67 × 36 = 60ms and the task needs to initiate at least once in this time so it can loop through

all the queued messages. So the correct initiation interval is 60ms for 36 executions, not 1.67ms

for 1 execution.

The decode task is also governed by a 36-item queue. The minimum length of the CAN frames is

0.7ms so, in the worst case, the queue could fill in 25.2ms. That means the analysis for this task

should be based on 36 executions with an initiation interval of 25.2ms.

2022 V2.2

Make sure your modifications are reversible and that any potential effects on the execution

time are as small as possible. You may want to leave the test modifications in as options that

could be enabled with compiler preprocessor directives (see example below).

#ifndef NO_SAMPLE_ISR //Don’t attach ISR if NO_SAMPLE_ISR is defined

sampleTimer->attachInterrupt(sampleISR);

#endif

b) Measure execution time over a fixed number of iterations to average out measurement

inaccuracy. Place a for loop at the end of the setup function that will call scanKeysTask()

32 times.

Change the while (1) loop in scanKeysTask() to a for loop that will run for 32 iterations.

Set the size of msgOutQ to 384 so that every generated message can be queued without

blocking.

The for loop can be timed using the Arduino micros() function, which returns the number

of microseconds since startup. Before the for loop, store the value returned from micros()

into a local variable. After the for loop, call micros() again and subtract the first value to

find the difference. Send the difference over the serial port.

uint32_t startTime = micros();

for (int iter = 0; iter < 32; iter++) {

scanKeysTask()

}

Serial.println(micros()-startTime);

FreeRTOS Run Time Statistics
FreeRTOS can provide some information on execution time and utilisation without the need to

isolate tasks, but some setting up is required. You need edit FreeRTOSConfig.h in the FreeRTOS

library to define a macro that accesses the timer in your system. You could use the Arduino

micros() function or you could set up a new HardwareTimer instance to give more precision.

When your system is running, you can call vTaskGetRunTimeStats() to get a task utilisation

report from the FreeRTOS kernel. The report is placed into a char array that can be written

directly to the serial port.

vTaskGetRunTimeStats() gives a breakdown of accumulated execution time per task. To covert

this into a task execution time per iteration you also need to count the number of iterations of

each task. This could be done by adding a counter to each task, but be aware that the numbers

could change between calling vTaskGetRunTimeStats() and reading the task iteration counters.

Just like the manual method, you need to ensure that execution time measurements are the

worst case to use them in a critical instant analysis. That may be challenging to achieve with

every task executing at once, but it could be easier to run subsets of the tasks together rather

than each one separately. FreeRTOS cannot tell you how much time is spent executing tasks in

interrupts.

This page provides more information on run time statistics: https://www.freertos.org/rtos-run-

time-stats.html

https://www.freertos.org/rtos-run-time-stats.html
https://www.freertos.org/rtos-run-time-stats.html

2022 V2.2

Run the code again and you should see the execution time for 32 iterations of

scanKeysTask() displayed on the serial terminal. It will probably be in the range 50-100µs per

iteration.

c) You need a measurement of execution time for every task to complete a critical instant

analysis. Apply a similar process to the one you used to measure scanKeysTask(), adapting

it to exercise the worst-case execution time of each task. You’ll need to carry out final

measurements once your code is finished, so it would be helpful to add compilation options

that can easily switch between test and normal builds.

Next Steps
These lab instructions have worked through the implementation of the coursework core features

using real-time programming techniques that allow concurrent task execution and thread-safe

data sharing.

The advanced features of the coursework are open-ended, so look for new features and

improvements to the core features that take your work in an interesting direction. The lecture

slides for Coursework 2 have some suggestions. Whatever you decide to implement, make sure

that your system will have correct and reliable real time behaviour – and prove this through

analysis in your report.

