
2022 V2.2

Embedded Systems

Coursework 2 Part 1: Real time systems
This coursework is based on a music synthesiser. You need to write the embedded software to make

it work. Several real time tasks will need to be executed concurrently, such as detecting key presses

and generating the output waveform.

The first part of the lab notes will lead you through the implementation of some of the core features

of the synthesiser. This includes:

• Scanning the key matrix to find out which keys are pressed

• Using an interrupt to generate a sawtooth wave

• Using threads to allow the key scan and display tasks to be decoupled and executed

concurrently

The inputs to the synthesiser are 12 keys (1 octave), 4 control knobs and a joystick. The outputs are 2

channels of audio and an OLED display. There is a serial port for communication with a host via USB,

and a CAN bus that allows multiple modules to be stacked together to make a larger keyboard.

The keyboard is controlled using a ST NUCLEO-L432KC microcontroller module that contains a

STM32L432KCU6U processor, which has an Arm Cortex-M4 core.

1. Load the starter code onto the keyboard
The development flow for the project is based on Platformio, which is an IDE customisation for

Visual Studio Code. Platformio can target many different embedded platforms using different

frameworks and libraries. We will use the STM32duino framework, which provides an Arduino-

like environment that makes it easy to access microcontroller hardware features. The overall

development stack looks like this:

Stacking

Connector

Microcontroller

(goes here)

Headphone socket Speaker Display

Joystick

Keys

Knobs

Reset

2022 V2.2

Get started by installing Platformio and forking the starter code

a) Install Visual Studio Code, if you don’t have it already, and add Platformio from the website,

or by searching for it in the VS Code extensions marketplace

b) Fork the starter code from GitHub. You can use the GitHub extension for VS Code, use git

from the command line or any other client, or download the zipped project files from

GitHub. Open the project folder in VS Code

c) Switch to the Platformio Home tab with the button on the bottom toolbar and select the

libraries view. Search for the U8g2 display driver library, select the latest version and add it

to the project.

d) Connect the microcontroller module on the synth to your computer with a USB cable.

e) Compile and the code and flash it to the MCU using the → button on the bottom toolbar

f) The ‘Hello World’ message should appear on the OLED display.

g) Open the serial monitor using the button on the toolbar. Press the reset button on the

synth (SW19) or the MCU module (B1) and you will see the `Hello World’ message on the

terminal

ISA/Core: ARM Cortex-M4

Hardware: STMicroelectronics STM32

Compiler: GNU GCC

HAL: CMSIS/STM32Cube

Framework/core libraries: STM32duino

Your code u8g2 FreeRTOS

https://platformio.org/platformio-ide
https://github.com/edstott/ES-synth-starter

2022 V2.2

2. Read inputs
The keys and knobs on the keyboard module are connected to a key matrix, which allows many

keys to be read with a small number of microcontroller pins

[RA2,RA1,RA0] C0 C1 C2 C3

0 Key C Key C♯ Key D Key D♯

1 Key E Key F Key F♯ Key G

2 Key G♯ Key A Key A♯ Key B

3 Knob 3 A Knob 3 B Knob 2 A Knob 2 B

4 Knob 1 A Knob 1 B Knob 0 A Knob 0 B

Using STM32Cube
The STM32duino framework is useful because you can use familiar functions to access hardware

and get access to useful libraries. However, it does not include libraries for all the hardware

modules and you may need to edit the framework source code to unlock advanced features,

such as DMA and the full DAC resolution.

STM32duino is built on top of STM32Cube, which is the manufacturer’s hardware abstraction

layer (HAL) for STM32 microcontrollers. You can access the HAL in STM32duino just by including

the relevant header files, but a few things require edits to the STM32duino files.

You can also build a STM32Cube from scratch. You can compile STM32Cube projects in

Platformio, but you will probably need to start by generating initialisation code using

STM32CubeMX, which is a GUI-based tool. You can also use STM32CubeIDE, which is the

manufacturer’s Eclipse-based IDE, as an alternative to VS Code and Platformio.

The libraries used in these lab instructions are based on STM32duino, so they won’t work with

STM32Cube. You will need to locate or create ports for libraries, for example by defining

callbacks for U8g2 to access I2C and GPIO hardware as described here:

https://github.com/olikraus/u8g2/wiki/Porting-to-new-MCU-platform

R
A

2

R
A

1

R
A

0

R0

R7

C
0

C
1

C
2

C
3

3
 t

o
 8

 D
ec

o
d

er

Switch and a diode R
EN

https://www.st.com/en/ecosystems/stm32cube.html
https://www.st.com/en/development-tools/stm32cubemx.html
https://www.st.com/en/development-tools/stm32cubeide.html
https://github.com/olikraus/u8g2/wiki/Porting-to-new-MCU-platform

2022 V2.2

5 Knob 2 S Knob 3 S Joystick S West Detect

6 Knob 0 S Knob 1 S Unused East Detect

7 Unused

a) Read a single row of the switch matrix

i. Write a function that will read the inputs from the four columns of the switch matrix (C0,

C1, C2, C3) and return the four bits concatenated together as a single byte.

uint8_t readCols(){

…

}

Add lines to the start of your function to set each row select address (RA0, RA1, RA2) low

and the row select enable (REN) high. This will drive R0 low and allow you to read Row 0,

notes C–D♯. Use the function DigitalWrite() to set the outputs and DigitalRead() to

read the inputs.

ii. Modify the main loop of the function to call the readCols() function and print the result

on the OLED display at coordinates (2,20).

uint8_t keys = readCols();

u8g2.setCursor(2,20);

u8g2.print(keys,HEX);

You will need to replace the existing statement u8g2.print(count++);, which prints the

iteration count

iii. Upload and test your code. Pressing each of the four left-most keys of the keyboard should

change the number that is displayed on the screen. The keys read as logic 0 when they are

pressed so if you press all four of the keys the number will change to 0.

b) Read all the keys

i. Write a function that will select a given row of the switch matrix by setting the value of

each row select address pin. Disable (set low) the row select enable before the row select

address pins are being changed, then enable it again at the end of the function. This

prevents glitches as the address pins are changed.

void setRow(uint8_t rowIdx){

…

}

Remove the lines that control the row select addresses and row select enable from the

readCols() function.

ii. In the loop() function, create an array that will store the reading from each row in the

matrix

uint8_t keyArray[7];

Place a for loop around your call to readCols(). This will be the key scanning loop. It

should loop over the row numbers 0 to 2. For each row, it should set the row select

address then read the columns. The result should be stored in keyArray using the row

number as the array index.

2022 V2.2

keyArray has seven elements because that is the overall size of the key matrix. But we’ll

only read rows 0 to 2 for now because that range covers the 12 music keys.

The switch matrix columns take some time to switch from logic 0 to logic 1 when the row

select changes due to parasitic capacitance. Add a small delay inside your loop between

the calls to setRow() and readCols():

delayMicroseconds(3);

iii. Modify the display code to print the contents of keyArray indices 0, 1 and 2. Format the

data in hexadecimal format so that each row is represented by a single digit on the display.

Upload the code and you should now see a 3-digit hexadecimal number representing the

state of all 12 keys. Check that each key press is detected.

3. Generate Sound
The next basic function of the keyboard is to generate sound. We will begin by generating a

sawtooth wave with a frequency according to the key that is pressed.

Most digital systems for generating and processing signals use a constant sample rate: we will

use a sample rate fs of 22kHz. A fixed sample rate means that we can change the frequency of

the note by changing the number of samples that make up one period of the waveform.

Complete microcontroller pin assignments
Starter code name STM32duino name MCU pin Function
RA0_PIN D3 PB0 Row select address bit 0
RA1_PIN D6 PB1 Row select address bit 1
RA2_PIN D12 PB4 Row select address bit 2
REN_PIN A5 PA6 Row select enable
C0_PIN A2 PA3 Key matrix column 0
C1_PIN D9 PA8 Key matrix column 1
C2_PIN A6 PA7 Key matrix column 2
C3_PIN D1 PA9 Key matrix column 3
OUT_PIN D11 PB5 Multiplexed output for display enable and

handshaking signals
OUTL_PIN A4 PA5 Analogue audio output left
OUTR_PIN A3 PA4 Analogue audio output right
JOYX_PIN A0 PA1 Analogue joystick input X
JOYY_PIN A1 PA0 Analogue joystick input Y
 D4 PB7 Display I2C SDA
 D5 PB6 Display I2C SCL
 D10 PA11 CAN bus RXD
 D2 PA12 CAN bus TXD
LED_BUILTIN LED_BUILTIN PB3 LED LD3

2022 V2.2

Therefore, we need to convert each note frequency into a step size for a phase accumulator.

Over time, the phase accumulator will count up until it overflows and starts again. Each

overflow of the phase accumulator represents one period of the output waveform. Increasing

the step size causes the phase accumulator to overflow after fewer sample periods and

therefore the frequency is higher.

We will use a 32-bit signed phase accumulator because that is the word size of the CPU. That

means it will overflow to – (231) when it reaches the value 231. Then, the step size S required to

achieve a certain frequency f is given by:

S =
232f

fs

a) Define an array of the phase step sizes required for each of the 12 notes of your keyboard.

Since these values will be constants, use a const array initialiser of the form:

const int32_t stepSizes [] = { … };

Configure your keyboard to use equal temperament, which means that the difference in

frequency between adjacent notes is a factor of √2
12

. Therefore, a span of 12 keys results in

a doubling of frequency, which is one octave. Base your tuning on a frequency of 440Hz for

the note A, which is the 10th key from the left of your keyboard and element 9 of your notes

array.

b) Add code to your main loop that will check the state of each key in keyArray and look up

the corresponding step size in the stepSizes array if the key is pressed. Store the result in a

global variable:

volatile int32_t currentStepSize;

Small step – low frequency Large step – high frequency

Constant

sample

rate

Phase

2022 V2.2

This variable will be accessed by more than one concurrent task, so it is declared with the

keyword volatile. This instructs the compiler to access the variable in memory each time it

appears in the source code. Otherwise, the compiled code may keep a copy of the variable in

a CPU register and miss updates made by other tasks.

We will only be able to play one note at once at first, so if multiple keys are pressed just use

the step size from the last key to be checked. If no keys are pressed then the step size should

be set to zero.

Add information to the OLED display to show which note is selected.

c) Write a new function that will update the phase accumulator and set the analogue output

voltage at each sample interval:

void sampleISR() {

…

}

It will be an interrupt service routine, which means that it cannot have arguments or a return

value. The function will be triggered by an interrupt 22,000 times per second. It will add

currentStepSize to the phase accumulator to generate the output waveform. Define the

phase accumulator as a static local variable, so that its value will be stored between

successive calls of sampleISR():

static int32_t phaseAcc = 0;

phaseAcc += currentStepSize;

The conversion from the phase accumulator to a sawtooth wave output is quite simple

because the value of a sawtooth function is directly proportional to the phase. First, we will

right-shift (divide by 2n) so that its range will be reduced to −(27) ≤ 𝑣 ≤ 27 − 1.

int32_t Vout = phaseAcc >> 24;

The Arduino analogWrite() function has a range of 0-255: 0 produces 0V and 255 produces

3.3V. Therefore, we need to add a DC offset so that an audio value of 0 produces a voltage of

1.65V

analogWrite(OUTR_PIN, Vout + 128);

Different waveform functions will require more maths to convert phase into output voltage.

For example, a sine wave would require the calculation of a sin function. Whatever the

waveform, it’s best to define the function to have a midpoint of zero and then add the DC

2022 V2.2

offset in the final step. That makes it easier to add and multiply signals and keep the correct

range of values.

d) A timer is needed to trigger the interrupt that will call sampleISR(). Create a timer in the

setup function using the stm32duino library class HardwareTimer:

TIM_TypeDef *Instance = TIM1;

HardwareTimer *sampleTimer = new HardwareTimer(Instance);

The timer is configured by setting the period, attaching the ISR and starting the timer, also in

the setup function:

sampleTimer->setOverflow(22000, HERTZ_FORMAT);

sampleTimer->attachInterrupt(sampleISR);

sampleTimer->resume();

The documentation for the library is here:

https://github.com/stm32duino/wiki/wiki/HardwareTimer-library

e) Test your code. You should hear a note from the speaker when you press each key. You

could test that the notes are correct with a guitar tuner app if you like.

f) Even though the code works, there is a possible synchronisation bug. The currentStepSize

variable could be read in sampleISR() when it has been partially modified in the main loop.

The first improvement is to reduce the number of accesses to currentStepSize in the main

loop to a single store operation. You were asked to check each key and update

currentStepSize if the key is pressed. The code can be improved by using a local variable

for the step size until all the keys have been checked. Then, when the final value is known,

the local variable can be copied to currentStepSize so that the global variable is only

accessed once.

Next, we can force the write to currentStepSize in the main loop to be an atomic

operation using a built-in compiler function. The variable is a 32-bit integer so any write is

likely to be atomic by default because it can be completed in a single CPU operation.

However, using an atomic store function makes certain and shows anyone who maintains

the code in future that the operation is intended to be atomic:

Warning: there is no hardware volume control and headphones may be very loud. Do not use

headphones until you have tested the loudness with the headphones away from your ears.

Numerically-controlled Oscillator
You may wonder if it was necessary to use a 32-bit phase accumulator if only 8 bits are needed to

create the waveform. The technique is known as a numerically controlled oscillator and it allows

a more accurate frequency than would be possible with an 8-bit accumulator. The down

sampling from the 32-bit accumulator to the 8-bit output means that each individual cycle of the

waveform may have an inaccurate period, but that error is averaged out over multiple cycles.

The result is phase jitter, which is less obvious than a continuous frequency error.

If you try to generate very high tones you will hear aliased frequency components arising from

the periodicity of the jitter, particularly for discontinuous waveforms like the sawtooth. This is a

limitation of the 22kHz sample rate.

https://github.com/stm32duino/wiki/wiki/HardwareTimer-library

2022 V2.2

__atomic_store_n(¤tStepSize, localCurrentStepSize, __ATOMIC_RELAXED);

This function stores localCurrentStepSize in currentStepSize as an atomic operation.

The parameter __ATOMIC_RELAXED indicates that we need an atomic store, but we’re not

concerned about the ordering of other instructions that don’t use the two variables in

question. Refer to the documentation for more information about this parameter.

A complimentary call to __atomic_load_n() would be necessary if currentStepSize was

read in another thread. However, since the variable is read in an ISR, an atomic operation is

unneeded because the ISR cannot be interrupted by anything else.

The compiler documentation for built-in atomic operations is here:

https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html

4. Split key scanning and display update tasks with threading
Currently, the keys are read once every execution of the main loop. The main loop is also used to

update the display, which is not ideal because it forces these tasks to have the same initiation

interval. We will separate these two processes into different tasks by creating a thread to run

the key scanning task.

a) Move all your code for scanning the keyboard into a single function:

void scanKeysTask(void * pvParameters) {

…

}

The function should do the following:

• Loop through the rows of the key matrix

• Read the columns of the matrix and store the result in keyArray

• Look up the phase step size for the key that is pressed and update currentStepSize

You will need to make keyArray a volatile, global variable so that it can be accessed by both

scanKeysTask() and the main loop.

Test your code by calling scanKeysTask() in the main loop. The parameter pvParameters

will be used by the thread initialiser – just set it to NULL in your call. Everything should work

as before.

b) Install the ‘STM32duino FreeRTOS’ library with the Platformio library manager. Include its

header file at the start of your source file:

#include <STM32FreeRTOS.h>

Now we will make scanKeysTask() an independent thread. Convert it to an infinite loop by

wrapping contents of the function in a while loop:

while (1) {

…

}

Add the following code into your setup() function to initialise and run the thread:

TaskHandle_t scanKeysHandle = NULL;

xTaskCreate(

https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html

2022 V2.2

scanKeysTask, /* Function that implements the task */

"scanKeys", /* Text name for the task */

64, /* Stack size in words, not bytes */

NULL, /* Parameter passed into the task */

1, /* Task priority */

&scanKeysHandle); /* Pointer to store the task handle */

The API reference for this function call is here: https://www.freertos.org/a00125.html. We

have used a stack size of 64 words (256 bytes) for the thread. The stack needs to be large

enough to store all the local variables of the functions called in the thread.

Add this function call at the end of the setup function to start the RTOS scheduler:

vTaskStartScheduler();

Remove the call to scanKeysTask() from the main loop.

c) The thread will need to execute at a constant rate, which will be the sample rate of our

keyboard. We can use the RTOS function vTaskDelayUntil() to do this – it blocks

execution until a certain time has passed since the last time the function was completed.

Declare two local variables in scanKeysTask(), before the loop:

const TickType_t xFrequency = 50/portTICK_PERIOD_MS;

TickType_t xLastWakeTime = xTaskGetTickCount();

xFrequency will be the initiation interval of the task. It is given in units of RTOS scheduler

ticks and we can use the constant portTICK_PERIOD_MS to convert a time in milliseconds to

scheduler ticks. Here we have set the initiation interval to 50ms.

xLastWakeTime will store the time (tick count) of the last initiation. We initialise it with the

API call xTaskGetTickCount() to get the current time. In subsequent iterations this variable

will be updated by the call to vTaskDelayUntil().

Now you can add the blocking call to vTaskDelayUntil() at the start of your infinite loop:

vTaskDelayUntil(&xLastWakeTime, xFrequency);

https://www.freertos.org/a00125.html

2022 V2.2

This function call blocks execution of the thread until xFrequency ticks have happened since

the last execution of the loop. The API reference for this function is here:

https://www.freertos.org/vtaskdelayuntil.html. As an RTOS function, it places the thread

into the waiting state and allows the CPU to do other tasks until it is time to run the function

again.

d) Test your code. It should behave as before. You may have noticed another potential

synchronisation bug with the keyArray array. keyArray cannot be treated as a simple

atomic variable because it is a multi-word array. We will solve the problem in the next

section using a mutex.

e) The main loop is usually left empty in FreeRTOS systems. Create another thread to run the

display update task (name the function displayUpdateTask()) with a 100ms initiation

interval. Remove the original, polling-based rate control implemented with if (millis() >

next) {…} and replace it with an infinite loop and a call to vTaskDelayUntil(). Since

100ms is longer than 50ms, set the priority of the display update thread to 1 and the key

scanning thread to 2 (higher priority). Use a stack size of 256 words for

displayUpdateTask(). Your loop() function should now be empty.

How much stack?
The stack stores the arguments, local variables and return pointers for functions that are called.

Each thread has its own stack. The total stack required depends on the worst-case combination

of function calls. Recursive functions are a bad idea when the stack size is fixed because the

worst-case stack requirement depends on the data and it can be hard to determine. There are

two methods to determine the amount of stack to allocate to a thread:

1. Examine the compiler output to find the stack footprint of every function. Then, add

together the combinations of functions that could all be in progress at the same time

inside one thread. The use of libraries makes this process more difficult because they

might have their own chains of function calls that are hard to inspect. The Inspect view in

Platformio can be used to explore memory usage in your project.

2. Find it at runtime. The FreeRTOS function uxTaskGetStackHighWaterMark() returns

the largest amount of stack that a thread has ever needed. You can allocate a large stack

at first and then optimise when the code is working. You need to ensure that all the code

has been exercised before you report the stack high water mark.

If a thread in your system runs out of stack the RTOS will enter an error state in an infinite loop.

The LED on the microcontroller module will flash in bursts of 4 flashes.

You can reduce the stack requirement by using dynamically allocated memory with new or

malloc(). Dynamic memory comes from a single pool (the heap), so it is more flexible than the

per-thread allocation of stack memory.

https://www.freertos.org/vtaskdelayuntil.html

