Merge branch 'main' into kacper

This commit is contained in:
Kacper 2022-03-24 21:53:27 +00:00
commit b1854a3ca4
8 changed files with 467 additions and 358 deletions

Binary file not shown.

View file

@ -1,214 +0,0 @@
#include <stm32l4xx_hal_can.h>
#include <stm32l4xx_hal_rcc.h>
#include <stm32l4xx_hal_gpio.h>
#include <stm32l4xx_hal_cortex.h>
//Overwrite the weak default IRQ Handlers and callabcks
extern "C" void CAN1_RX0_IRQHandler(void);
extern "C" void CAN1_TX_IRQHandler(void);
//Pointer to user ISRS
void (*CAN_RX_ISR)() = NULL;
void (*CAN_TX_ISR)() = NULL;
//CAN handle struct with initialisation parameters
//Timing from http://www.bittiming.can-wiki.info/ with bit rate = 125kHz and clock frequency = 80MHz
CAN_HandleTypeDef CAN_Handle = {
CAN1,
{
40, //Prescaler
CAN_MODE_NORMAL, //Normal/loopback/silent mode
CAN_SJW_2TQ, //SyncJumpWidth
CAN_BS1_13TQ, //TimeSeg1
CAN_BS2_2TQ, //TimeSeg2
DISABLE, //TimeTriggeredMode
DISABLE, //AutoBusOff
ENABLE, //AutoWakeUp
ENABLE, //AutoRetransmission
DISABLE, //ReceiveFifoLocked
ENABLE //TransmitFifoPriority
},
HAL_CAN_STATE_RESET, //State
HAL_CAN_ERROR_NONE //Error Code
};
//Initialise CAN dependencies: GPIO and clock
void HAL_CAN_MspInit(CAN_HandleTypeDef* CAN_Handle) {
//Set up the pin initialisation
GPIO_InitTypeDef GPIO_InitCAN_TX = {
GPIO_PIN_12, //PA12 is CAN TX
GPIO_MODE_AF_PP, //Alternate function, push-pull driver
GPIO_NOPULL, //No pull-up
GPIO_SPEED_FREQ_MEDIUM, //Medium slew rate
GPIO_AF9_CAN1 //Alternate function is CAN
};
GPIO_InitTypeDef GPIO_InitCAN_RX = {
GPIO_PIN_11, //PA11 is CAN RX
GPIO_MODE_AF_PP, //Alternate function, push-pull driver
GPIO_PULLUP, //Pull-up enabled
GPIO_SPEED_FREQ_MEDIUM, //Medium slew rate
GPIO_AF9_CAN1 //Alternate function is CAN
};
//Enable the CAN and GPIO clocks
__HAL_RCC_CAN1_CLK_ENABLE(); //Enable the CAN interface clock
__HAL_RCC_GPIOA_CLK_ENABLE(); //Enable the clock for the CAN GPIOs
//Initialise the pins
HAL_GPIO_Init(GPIOA, &GPIO_InitCAN_TX); //Configure CAN pin
HAL_GPIO_Init(GPIOA, &GPIO_InitCAN_RX); //Configure CAN pin
}
uint32_t CAN_Init(bool loopback=false) {
if (loopback)
CAN_Handle.Init.Mode = CAN_MODE_LOOPBACK;
return (uint32_t) HAL_CAN_Init(&CAN_Handle);
}
uint32_t setCANFilter(uint32_t filterID, uint32_t maskID, uint32_t filterBank) {
//Set up the filter definition
CAN_FilterTypeDef filterInfo = {
(filterID << 5) & 0xffe0, //Filter ID
0, //Filter ID LSBs = 0
(maskID << 5) & 0xffe0, //Mask MSBs
0, //Mask LSBs = 0
0, //FIFO selection
filterBank & 0xf, //Filter bank selection
CAN_FILTERMODE_IDMASK, //Mask mode
CAN_FILTERSCALE_32BIT, //32 bit IDs
CAN_FILTER_ENABLE, //Enable filter
0 //uint32_t SlaveStartFilterBank
};
return (uint32_t) HAL_CAN_ConfigFilter(&CAN_Handle, &filterInfo);
}
uint32_t CAN_Start() {
return (uint32_t) HAL_CAN_Start(&CAN_Handle);
}
uint32_t CAN_TX(uint32_t ID, uint8_t data[8]) {
//Set up the message header
CAN_TxHeaderTypeDef txHeader = {
ID & 0x7ff, //Standard ID
0, //Ext ID = 0
CAN_ID_STD, //Use Standard ID
CAN_RTR_DATA, //Data Frame
8, //Send 8 bytes
DISABLE //No time triggered mode
};
//Wait for free mailbox
while (!HAL_CAN_GetTxMailboxesFreeLevel(&CAN_Handle));
//Start the transmission
return (uint32_t) HAL_CAN_AddTxMessage(&CAN_Handle, &txHeader, data, NULL);
}
uint32_t CAN_CheckRXLevel() {
return HAL_CAN_GetRxFifoFillLevel(&CAN_Handle, 0);
}
uint32_t CAN_RX(uint32_t &ID, uint8_t data[8]) {
CAN_RxHeaderTypeDef rxHeader;
//Wait for message in FIFO
while (!HAL_CAN_GetRxFifoFillLevel(&CAN_Handle, 0));
//Get the message from the FIFO
uint32_t result = (uint32_t) HAL_CAN_GetRxMessage(&CAN_Handle, 0, &rxHeader, data);
//Store the ID from the header
ID = rxHeader.StdId;
return result;
}
uint32_t CAN_RegisterRX_ISR(void(& callback)()) {
//Store pointer to user ISR
CAN_RX_ISR = &callback;
//Enable message received interrupt in HAL
uint32_t status = (uint32_t) HAL_CAN_ActivateNotification (&CAN_Handle, CAN_IT_RX_FIFO0_MSG_PENDING);
//Switch on the interrupt
HAL_NVIC_SetPriority (CAN1_RX0_IRQn, 6, 0);
HAL_NVIC_EnableIRQ (CAN1_RX0_IRQn);
return status;
}
uint32_t CAN_RegisterTX_ISR(void(& callback)()) {
//Store pointer to user ISR
CAN_TX_ISR = &callback;
//Enable message received interrupt in HAL
uint32_t status = (uint32_t) HAL_CAN_ActivateNotification (&CAN_Handle, CAN_IT_TX_MAILBOX_EMPTY);
//Switch on the interrupt
HAL_NVIC_SetPriority (CAN1_TX_IRQn, 6, 0);
HAL_NVIC_EnableIRQ (CAN1_TX_IRQn);
return status;
}
void HAL_CAN_RxFifo0MsgPendingCallback (CAN_HandleTypeDef * hcan){
//Call the user ISR if it has been registered
if (CAN_RX_ISR)
CAN_RX_ISR();
}
void HAL_CAN_TxMailbox0CompleteCallback (CAN_HandleTypeDef * hcan){
//Call the user ISR if it has been registered
if (CAN_TX_ISR)
CAN_TX_ISR();
}
void HAL_CAN_TxMailbox1CompleteCallback (CAN_HandleTypeDef * hcan){
//Call the user ISR if it has been registered
if (CAN_TX_ISR)
CAN_TX_ISR();
}
void HAL_CAN_TxMailbox2CompleteCallback (CAN_HandleTypeDef * hcan){
//Call the user ISR if it has been registered
if (CAN_TX_ISR)
CAN_TX_ISR();
}
//This is the base ISR at the interrupt vector
void CAN1_RX0_IRQHandler(void){
//Use the HAL interrupt handler
HAL_CAN_IRQHandler(&CAN_Handle);
}
//This is the base ISR at the interrupt vector
void CAN1_TX_IRQHandler(void){
//Use the HAL interrupt handler
HAL_CAN_IRQHandler(&CAN_Handle);
}

View file

@ -1,24 +0,0 @@
//Initialise the CAN module
uint32_t CAN_Init(bool loopback=false);
//Enable the CAN module
uint32_t CAN_Start();
//Set up a recevie filter
//Defaults to receive everything
uint32_t setCANFilter(uint32_t filterID=0, uint32_t maskID=0, uint32_t filterBank=0);
//Send a message
uint32_t CAN_TX(uint32_t ID, uint8_t data[8]);
//Get the number of received messages
uint32_t CAN_CheckRXLevel();
//Get a received message from the FIFO
uint32_t CAN_RX(uint32_t &ID, uint8_t data[8]);
//Set up an interrupt on received messages
uint32_t CAN_RegisterRX_ISR(void(& callback)());
//Set up an interrupt on transmitted messages
uint32_t CAN_RegisterTX_ISR(void(& callback)());

31
lib/es_can/es_can Normal file
View file

@ -0,0 +1,31 @@
#include <cstdint>
#ifndef ES_CAN_H
#define ES_CAN_H
// Initialise the CAN module
uint32_t CAN_Init(bool loopback = false);
// Enable the CAN module
uint32_t CAN_Start();
// Set up a recevie filter
// Defaults to receive everything
uint32_t setCANFilter(uint32_t filterID = 0, uint32_t maskID = 0, uint32_t filterBank = 0);
// Send a message
uint32_t CAN_TX(uint32_t ID, uint8_t data[8]);
// Get the number of received messages
uint32_t CAN_CheckRXLevel();
// Get a received message from the FIFO
uint32_t CAN_RX(uint32_t &ID, uint8_t data[8]);
// Set up an interrupt on received messages
uint32_t CAN_RegisterRX_ISR(void (&callback)());
// Set up an interrupt on transmitted messages
uint32_t CAN_RegisterTX_ISR(void (&callback)());
#endif

202
lib/es_can/es_can.cpp Normal file
View file

@ -0,0 +1,202 @@
#include <es_can>
#include <stm32l4xx_hal_can.h>
#include <stm32l4xx_hal_cortex.h>
#include <stm32l4xx_hal_gpio.h>
#include <stm32l4xx_hal_rcc.h>
// Overwrite the weak default IRQ Handlers and callabcks
extern "C" void CAN1_RX0_IRQHandler(void);
extern "C" void CAN1_TX_IRQHandler(void);
// Pointer to user ISRS
void (*CAN_RX_ISR)() = NULL;
void (*CAN_TX_ISR)() = NULL;
// CAN handle struct with initialisation parameters
// Timing from http://www.bittiming.can-wiki.info/ with bit rate = 125kHz and clock frequency = 80MHz
CAN_HandleTypeDef CAN_Handle = {
CAN1,
{
40, // Prescaler
CAN_MODE_NORMAL, // Normal/loopback/silent mode
CAN_SJW_2TQ, // SyncJumpWidth
CAN_BS1_13TQ, // TimeSeg1
CAN_BS2_2TQ, // TimeSeg2
DISABLE, // TimeTriggeredMode
DISABLE, // AutoBusOff
ENABLE, // AutoWakeUp
ENABLE, // AutoRetransmission
DISABLE, // ReceiveFifoLocked
ENABLE // TransmitFifoPriority
},
HAL_CAN_STATE_RESET, // State
HAL_CAN_ERROR_NONE // Error Code
};
// Initialise CAN dependencies: GPIO and clock
void HAL_CAN_MspInit(CAN_HandleTypeDef *CAN_Handle) {
// Set up the pin initialisation
GPIO_InitTypeDef GPIO_InitCAN_TX = {
GPIO_PIN_12, // PA12 is CAN TX
GPIO_MODE_AF_PP, // Alternate function, push-pull driver
GPIO_NOPULL, // No pull-up
GPIO_SPEED_FREQ_MEDIUM, // Medium slew rate
GPIO_AF9_CAN1 // Alternate function is CAN
};
GPIO_InitTypeDef GPIO_InitCAN_RX = {
GPIO_PIN_11, // PA11 is CAN RX
GPIO_MODE_AF_PP, // Alternate function, push-pull driver
GPIO_PULLUP, // Pull-up enabled
GPIO_SPEED_FREQ_MEDIUM, // Medium slew rate
GPIO_AF9_CAN1 // Alternate function is CAN
};
// Enable the CAN and GPIO clocks
__HAL_RCC_CAN1_CLK_ENABLE(); // Enable the CAN interface clock
__HAL_RCC_GPIOA_CLK_ENABLE(); // Enable the clock for the CAN GPIOs
// Initialise the pins
HAL_GPIO_Init(GPIOA, &GPIO_InitCAN_TX); // Configure CAN pin
HAL_GPIO_Init(GPIOA, &GPIO_InitCAN_RX); // Configure CAN pin
}
uint32_t CAN_Init(bool loopback) {
if (loopback)
CAN_Handle.Init.Mode = CAN_MODE_LOOPBACK;
return (uint32_t)HAL_CAN_Init(&CAN_Handle);
}
uint32_t setCANFilter(uint32_t filterID, uint32_t maskID, uint32_t filterBank) {
// Set up the filter definition
CAN_FilterTypeDef filterInfo = {
(filterID << 5) & 0xffe0, // Filter ID
0, // Filter ID LSBs = 0
(maskID << 5) & 0xffe0, // Mask MSBs
0, // Mask LSBs = 0
0, // FIFO selection
filterBank & 0xf, // Filter bank selection
CAN_FILTERMODE_IDMASK, // Mask mode
CAN_FILTERSCALE_32BIT, // 32 bit IDs
CAN_FILTER_ENABLE, // Enable filter
0 // uint32_t SlaveStartFilterBank
};
return (uint32_t)HAL_CAN_ConfigFilter(&CAN_Handle, &filterInfo);
}
uint32_t CAN_Start() {
return (uint32_t)HAL_CAN_Start(&CAN_Handle);
}
uint32_t CAN_TX(uint32_t ID, uint8_t data[8]) {
// Set up the message header
CAN_TxHeaderTypeDef txHeader = {
ID & 0x7ff, // Standard ID
0, // Ext ID = 0
CAN_ID_STD, // Use Standard ID
CAN_RTR_DATA, // Data Frame
8, // Send 8 bytes
DISABLE // No time triggered mode
};
// Wait for free mailbox
while (!HAL_CAN_GetTxMailboxesFreeLevel(&CAN_Handle))
;
// Start the transmission
return (uint32_t)HAL_CAN_AddTxMessage(&CAN_Handle, &txHeader, data, NULL);
}
uint32_t CAN_CheckRXLevel() {
return HAL_CAN_GetRxFifoFillLevel(&CAN_Handle, 0);
}
uint32_t CAN_RX(uint32_t &ID, uint8_t data[8]) {
CAN_RxHeaderTypeDef rxHeader;
// Wait for message in FIFO
while (!HAL_CAN_GetRxFifoFillLevel(&CAN_Handle, 0))
;
// Get the message from the FIFO
uint32_t result = (uint32_t)HAL_CAN_GetRxMessage(&CAN_Handle, 0, &rxHeader, data);
// Store the ID from the header
ID = rxHeader.StdId;
return result;
}
uint32_t CAN_RegisterRX_ISR(void (&callback)()) {
// Store pointer to user ISR
CAN_RX_ISR = &callback;
// Enable message received interrupt in HAL
uint32_t status = (uint32_t)HAL_CAN_ActivateNotification(&CAN_Handle, CAN_IT_RX_FIFO0_MSG_PENDING);
// Switch on the interrupt
HAL_NVIC_SetPriority(CAN1_RX0_IRQn, 6, 0);
HAL_NVIC_EnableIRQ(CAN1_RX0_IRQn);
return status;
}
uint32_t CAN_RegisterTX_ISR(void (&callback)()) {
// Store pointer to user ISR
CAN_TX_ISR = &callback;
// Enable message received interrupt in HAL
uint32_t status = (uint32_t)HAL_CAN_ActivateNotification(&CAN_Handle, CAN_IT_TX_MAILBOX_EMPTY);
// Switch on the interrupt
HAL_NVIC_SetPriority(CAN1_TX_IRQn, 6, 0);
HAL_NVIC_EnableIRQ(CAN1_TX_IRQn);
return status;
}
void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *hcan) {
// Call the user ISR if it has been registered
if (CAN_RX_ISR)
CAN_RX_ISR();
}
void HAL_CAN_TxMailbox0CompleteCallback(CAN_HandleTypeDef *hcan) {
// Call the user ISR if it has been registered
if (CAN_TX_ISR)
CAN_TX_ISR();
}
void HAL_CAN_TxMailbox1CompleteCallback(CAN_HandleTypeDef *hcan) {
// Call the user ISR if it has been registered
if (CAN_TX_ISR)
CAN_TX_ISR();
}
void HAL_CAN_TxMailbox2CompleteCallback(CAN_HandleTypeDef *hcan) {
// Call the user ISR if it has been registered
if (CAN_TX_ISR)
CAN_TX_ISR();
}
// This is the base ISR at the interrupt vector
void CAN1_RX0_IRQHandler(void) {
// Use the HAL interrupt handler
HAL_CAN_IRQHandler(&CAN_Handle);
}
// This is the base ISR at the interrupt vector
void CAN1_TX_IRQHandler(void) {
// Use the HAL interrupt handler
HAL_CAN_IRQHandler(&CAN_Handle);
}

19
lib/knob/knob Normal file
View file

@ -0,0 +1,19 @@
#ifndef KNOB_H
#define KNOB_H
class Knob {
private:
int rotation;
int minimum, maximum;
bool A, B;
bool rotPlusOnePrev, rotMinOnePrev;
public:
Knob(int minimum, int max);
int getRotation();
void updateRotation(bool ANew, bool BNew);
};
#endif

48
lib/knob/knob.cpp Normal file
View file

@ -0,0 +1,48 @@
#include <knob>
Knob::Knob(int minimum, int maximum) {
Knob::minimum = minimum;
Knob::maximum = maximum;
Knob::A = false;
Knob::B = false;
Knob::rotPlusOnePrev = false;
Knob::rotMinOnePrev = false;
Knob::rotation = 0;
}
int Knob::getRotation() {
return Knob::rotation;
};
void Knob::updateRotation(bool ANew, bool BNew) {
bool rotPlusOneNew = (!B && !A && !BNew && ANew) ||
(!B && A && BNew && ANew) ||
(B && !A && !BNew && !ANew) ||
(B && A && BNew && !ANew);
bool rotMinOneNew = (!B && !A && BNew && !ANew) ||
(!B && A && !BNew && !ANew) ||
(B && !A && BNew && ANew) ||
(B && A && !BNew && ANew);
bool impossibleState = (!B && !A && BNew && ANew) ||
(!B && A && BNew && !ANew) ||
(B && !A && !BNew && ANew) ||
(B && A && !BNew && !ANew);
if (rotPlusOneNew || (impossibleState && rotPlusOnePrev))
rotation += 2;
if (rotMinOneNew || (impossibleState && rotMinOnePrev))
rotation -= 2;
if (rotation < minimum)
rotation = minimum;
if (rotation > maximum)
rotation = maximum;
A = ANew;
B = BNew;
if (!impossibleState) {
rotPlusOnePrev = rotPlusOneNew;
rotMinOnePrev = rotMinOneNew;
}
}

View file

@ -1,66 +1,73 @@
// https://github.com/adamb314/ThreadHandler
#include <Arduino.h>
#include <U8g2lib.h>
#include <STM32FreeRTOS.h>
#include "knob.h"
#include <U8g2lib.h>
#include <atomic>
#include <es_can>
#include <knob>
#include <string>
volatile int32_t currentStepSize;
volatile uint8_t keyArray[7];
volatile int8_t volume;
volatile bool volumeFiner;
volatile int8_t wave;
volatile int8_t octave = 4;
#pragma region Globals(Config values, Variables, Objects, Types, etc.)
// Config values
const uint32_t interval = 10; // Display update interval
const uint32_t samplingRate = 44100; // Sampling rate
const uint32_t canID = 0x123;
// Variables
std::atomic<int32_t> currentStepSize;
std::atomic<uint8_t> keyArray[7];
std::atomic<uint8_t> octave = 4; // Octave to start on
std::atomic<int8_t> volume;
std::atomic<bool> volumeFiner;
std::atomic<int8_t> wave;
int8_t volumeHistory = 0;
SemaphoreHandle_t keyArrayMutex;
QueueHandle_t msgInQ;
uint8_t RX_Message[8] = {0};
// Objects
U8G2_SSD1305_128X32_NONAME_F_HW_I2C u8g2(U8G2_R0); // Display driver object
Knob K0(2,14,8); //Octave encoder
Knob K1(0,6); //Waveform encoder
Knob K3(0,10); //Volume encoder
enum waves{SQUARE=0,SAWTOOTH,TRIANGLE,SINE};
#pragma region Config Values
const uint32_t interval = 10; // Display update interval
const uint32_t samplingRate = 44100; // Sampling rate
const int32_t stepSizes[] = {
0, 3374406, 3575058, 3787642, 4012867, 4251485, 4504291, 4772130,
5055896, 5356535, 5675051, 6012507,
6370029, 6748811, 7150116, 7575284, 8025734, 8502969, 9008582,
9544260, 10111791, 10713070, 11350102, 12025014, 12740059, 13497622,
14300233, 15150569, 16051469, 17005939, 18017164, 19088521, 20223583,
21426140, 22700205, 24050029, 25480118, 26995245, 28600466, 30301138,
32102938, 34011878, 36034329, 38177042, 40447167, 42852281, 45400410,
48100059, 50960237, 53990491, 57200933, 60602277, 64205876, 68023756,
72068659, 76354085, 80894335, 85704562, 90800821, 96200119, 101920475,
107980982, 114401866, 121204555, 12841175, 136047513, 144137319, 152708170,
161788670, 171409125, 181601642, 192400238, 203840952, 215961966,
228803732, 242409110, 256823506, 272095026, 288274639, 305416341, 323577341,
342818251, 363203285, 384800477, 407681904}; // Step sizes for each note
static unsigned char waveforms[4][18] = {
{0x7f, 0x10, 0x41, 0x10, 0x41, 0x10, 0x41, 0x10, 0x41, 0x10, 0x41, 0x10,
0x41, 0x10, 0x41, 0x10, 0xc1, 0x1f}, //square wave
{0x70, 0x10, 0x58, 0x18, 0x48, 0x08, 0x4c, 0x0c, 0x44, 0x04, 0x46, 0x06,
0x42, 0x02, 0x43, 0x03, 0xc1, 0x01}, //sawtooth wave
{0x08, 0x00, 0x1c, 0x00, 0x36, 0x00, 0x63, 0x00, 0xc1, 0x00, 0x80, 0x11,
0x00, 0x1b, 0x00, 0x0e, 0x00, 0x04}, //triange wave
{0x1c, 0x00, 0x36, 0x00, 0x22, 0x00, 0x63, 0x00, 0x41, 0x10, 0xc0, 0x18,
0x80, 0x08, 0x80, 0x0d, 0x00, 0x07} //sine wave
// Program Specific Structures
typedef struct{
int32_t stepSize;
std::string note;
} Note;
const Note notes[] = {
{0, "None"}, {3185014, "C1"}, {3374405, "C1#"}, {3575058, "D1"}, {3787642, "D1#"}, {4012867, "E1"}, {4251484, "F1"}, {4504291, "F1#"}, {4772130, "G1"}, {5055895, "G1#"}, {5356535, "A1"}, {5675051, "A1#"}, {6012507, "B1"}, {6370029, "C2"}, {6748811, "C2#"}, {7150116, "D2"}, {7575284, "D2#"}, {8025734, "E2"}, {8502969, "F2"}, {9008582, "F2#"}, {9544260, "G2"}, {10111791, "G2#"}, {10713070, "A2"}, {11350102, "A2#"}, {12025014, "B2"}, {12740059, "C3"}, {13497622, "C3#"}, {14300233, "D3"}, {15150569, "D3#"}, {16051469, "E3"}, {17005939, "F3"}, {18017164, "F3#"}, {19088521, "G3"}, {20223583, "G3#"}, {21426140, "A3"}, {22700205, "A3#"}, {24050029, "B3"}, {25480118, "C4"}, {26995245, "C4#"}, {28600466, "D4"}, {30301138, "D4#"}, {32102938, "E4"}, {34011878, "F4"}, {36034329, "F4#"}, {38177042, "G4"}, {40447167, "G4#"}, {42852281, "A4"}, {45400410, "A4#"}, {48100059, "B4"}, {50960237, "C5"}, {53990491, "C5#"}, {57200933, "D5"}, {60602277, "D5#"}, {64205876, "E5"}, {68023756, "F5"}, {72068659, "F5#"}, {76354085, "G5"}, {80894335, "G5#"}, {85704562, "A5"}, {90800821, "A5#"}, {96200119, "B5"}, {101920475, "C6"}, {107980982, "C6#"}, {114401866, "D6"}, {121204555, "D6#"}, {128411753, "E6"}, {136047513, "F6"}, {144137319, "F6#"}, {152708170, "G6"}, {161788670, "G6#"}, {171409125, "A6"}, {181601642, "A6#"}, {192400238, "B6"}, {203840951, "C7"}, {215961965, "C7#"}, {228803732, "D7"}, {242409110, "D7#"}, {256823506, "E7"}, {272095026, "F7"}, {288274638, "F7#"}, {305416340, "G7"}, {323577341, "G7#"}, {342818251, "A7"}, {363203285, "A7#"}, {384800476, "B7"}};
enum waveform {
SQUARE = 0,
SAWTOOTH,
TRIANGLE,
SINE
};
static unsigned char volumes[6][18] = {
{0x10, 0x02, 0x98, 0x04, 0x1c, 0x05, 0x5f, 0x09, 0x5f, 0x09, 0x5f, 0x09,
0x1c, 0x05, 0x98, 0x04, 0x10, 0x02 }, //volume max
{0x10, 0x00, 0x98, 0x00, 0x1c, 0x01, 0x5f, 0x01, 0x5f, 0x01, 0x5f, 0x01,
0x1c, 0x01, 0x98, 0x00, 0x10, 0x00 }, //volume mid higher
{0x10, 0x00, 0x18, 0x00, 0x1c, 0x01, 0x5f, 0x01, 0x5f, 0x01, 0x5f, 0x01,
0x1c, 0x01, 0x18, 0x00, 0x10, 0x00 }, //volume mid lower
{0x10, 0x00, 0x18, 0x00, 0x1c, 0x00, 0x5f, 0x00, 0x5f, 0x00, 0x5f, 0x00,
0x1c, 0x00, 0x18, 0x00, 0x10, 0x00 }, //volume low
{0x10, 0x00, 0x18, 0x00, 0x1c, 0x00, 0x1f, 0x00, 0x5f, 0x00, 0x1f, 0x00,
0x1c, 0x00, 0x18, 0x00, 0x10, 0x00 }, //volume lowest
{0x10, 0x00, 0x18, 0x00, 0x5c, 0x04, 0x9f, 0x02, 0x1f, 0x01, 0x9f, 0x02,
0x5c, 0x04, 0x18, 0x00, 0x10, 0x00} //mute
const unsigned char waveforms[4][18] = {
{0x7f, 0x10, 0x41, 0x10, 0x41, 0x10, 0x41, 0x10, 0x41,
0x10, 0x41, 0x10, 0x41, 0x10, 0x41, 0x10, 0xc1, 0x1f}, // Square Wave
{0x70, 0x10, 0x58, 0x18, 0x48, 0x08, 0x4c, 0x0c, 0x44,
0x04, 0x46, 0x06, 0x42, 0x02, 0x43, 0x03, 0xc1, 0x01}, // Sawtooth Wave
{0x08, 0x00, 0x1c, 0x00, 0x36, 0x00, 0x63, 0x00, 0xc1,
0x00, 0x80, 0x11, 0x00, 0x1b, 0x00, 0x0e, 0x00, 0x04}, // Triangle Wave
{0x1c, 0x00, 0x36, 0x00, 0x22, 0x00, 0x63, 0x00, 0x41,
0x10, 0xc0, 0x18, 0x80, 0x08, 0x80, 0x0d, 0x00, 0x07} // Sine Wave
};
const unsigned char volumes[6][18] = {
{0x10, 0x02, 0x98, 0x04, 0x1c, 0x05, 0x5f, 0x09, 0x5f,
0x09, 0x5f, 0x09, 0x1c, 0x05, 0x98, 0x04, 0x10, 0x02}, // volume max
{0x10, 0x00, 0x98, 0x00, 0x1c, 0x01, 0x5f, 0x01, 0x5f,
0x01, 0x5f, 0x01, 0x1c, 0x01, 0x98, 0x00, 0x10, 0x00}, // volume mid higher
{0x10, 0x00, 0x18, 0x00, 0x1c, 0x01, 0x5f, 0x01, 0x5f,
0x01, 0x5f, 0x01, 0x1c, 0x01, 0x18, 0x00, 0x10, 0x00}, // volume mid lower
{0x10, 0x00, 0x18, 0x00, 0x1c, 0x00, 0x5f, 0x00, 0x5f,
0x00, 0x5f, 0x00, 0x1c, 0x00, 0x18, 0x00, 0x10, 0x00}, // volume low
{0x10, 0x00, 0x18, 0x00, 0x1c, 0x00, 0x1f, 0x00, 0x5f,
0x00, 0x1f, 0x00, 0x1c, 0x00, 0x18, 0x00, 0x10, 0x00}, // volume lowest
{0x10, 0x00, 0x18, 0x00, 0x5c, 0x04, 0x9f, 0x02, 0x1f,
0x01, 0x9f, 0x02, 0x5c, 0x04, 0x18, 0x00, 0x10, 0x00} // mute
};
const unsigned char icon_bits[] = {
0x00, 0x00, 0x00, 0x00, 0xcc, 0x00, 0xcc, 0x00, 0x00, 0x00,
0x00, 0x00, 0x02, 0x01, 0x02, 0x01, 0xfe, 0x01, 0x00, 0x00};
#pragma endregion
#pragma region Pin Definitions
// Row select and enable
const int RA0_PIN = D3;
@ -86,8 +93,6 @@ const int HKOW_BIT = 5;
const int HKOE_BIT = 6;
#pragma endregion
U8G2_SSD1305_128X32_NONAME_F_HW_I2C u8g2(U8G2_R0); // Display driver object
// Function to set outputs using key matrix
void setOutMuxBit(const uint8_t bitIdx, const bool value) {
digitalWrite(REN_PIN, LOW);
@ -110,7 +115,7 @@ uint8_t readCols() {
return row;
}
// Set current row
// Set multiplexer bits to select row
void setRow(const uint8_t rowIdx) {
digitalWrite(REN_PIN, LOW);
digitalWrite(RA0_PIN, rowIdx & 0x01);
@ -119,6 +124,7 @@ void setRow(const uint8_t rowIdx) {
digitalWrite(REN_PIN, HIGH);
}
uint32_t scaleVolume(uint32_t Vout){
uint32_t newVout = 0;
if(volumeFiner){
@ -129,20 +135,20 @@ uint32_t scaleVolume(uint32_t Vout){
return newVout;
}
//uint32_t combineNotes(uint32_t lol){}
uint16_t getTopKey(volatile uint8_t array[]) {
// Returns key value (as notes[] index) of highest currently pressed key
uint16_t getTopKey() {
uint16_t topKey = 0;
for (uint8_t i = 0; i < 3; i++) {
for (uint8_t j = 0; j < 4; j++) {
if (array[i] & (0x1 << j)) {
topKey = (octave-1) * 12 + i * 4 + j + 1;
if (keyArray[i] & (0x1 << j)) {
topKey = (octave - 1) * 12 + i * 4 + j + 1;
}
}
}
return topKey;
}
// Interrupt driven routine to send waveform to DAC
void sampleISR(){
static int32_t phaseAcc = 0;
phaseAcc += currentStepSize;
@ -164,60 +170,97 @@ void sampleISR(){
analogWrite(OUTR_PIN, Vout + 128);
}
void scanKeysTask(void * pvParameters){
uint8_t keyArrayCopy[7];
bool volumeFinerNext;
const TickType_t xFrequency = 50/portTICK_PERIOD_MS;
void CAN_RX_ISR() {
uint8_t ISR_RX_Message[8];
uint32_t ISR_rxID;
CAN_RX(ISR_rxID, ISR_RX_Message);
xQueueSendFromISR(msgInQ, ISR_RX_Message, nullptr);
}
void decodeTask(void *pvParameters) {
while (1) {
xQueueReceive(msgInQ, RX_Message, portMAX_DELAY);
if (RX_Message[0] == 0x50) { // Pressed
currentStepSize = notes[(RX_Message[1] - 1) * 12 + RX_Message[2]].stepSize;
} else { // Released
currentStepSize = 0;
}
}
}
void keyChangedSendTXMessage(uint8_t octave, uint8_t key, bool pressed) {
uint8_t TX_Message[8] = {0};
if (pressed) {
TX_Message[0] = 0x50; // "P"
} else {
TX_Message[0] = 0x52; // "R"
}
TX_Message[1] = octave;
TX_Message[2] = key;
CAN_TX(canID, TX_Message);
}
// Task to update keyArray values at a higher priority
void scanKeysTask(void *pvParameters) {
const TickType_t xFrequency = 50 / portTICK_PERIOD_MS;
TickType_t xLastWakeTime = xTaskGetTickCount();
while(1){
while (1) {
vTaskDelayUntil(&xLastWakeTime, xFrequency);
for (uint8_t i = 0; i < 7; i++) {
setRow(i);
uint8_t oldRow = keyArray[i];
delayMicroseconds(3);
keyArrayCopy[i] = readCols();
}
xSemaphoreTake(keyArrayMutex, portMAX_DELAY);
memcpy((void*)keyArray, keyArrayCopy, 7);
xSemaphoreGive(keyArrayMutex);
digitalToggle(LED_BUILTIN);
__atomic_store_n(&currentStepSize, stepSizes[getTopKey(keyArrayCopy)], __ATOMIC_RELAXED);
K0.updateRotation(keyArrayCopy[4] & 0x4, keyArrayCopy[4] & 0x8);
__atomic_store_n(&octave, K0.getRotation()/2, __ATOMIC_RELAXED);
K1.updateRotation(keyArrayCopy[4] & 0x1, keyArrayCopy[4] & 0x2);
__atomic_store_n(&wave, K1.getRotation()/2, __ATOMIC_RELAXED);
uint8_t newRow = readCols();
if (oldRow == newRow) {
continue;
} else {
keyArray[i] = newRow;
for (uint8_t j = 0; j < 4; j++) {
if ((oldRow & (0x1 << j)) ^ (newRow & (0x1 << j))) {
keyChangedSendTXMessage(octave, i * 4 + j + 1, newRow & (0x1 << j));
}
}
}
};
if(volumeFiner){
K3.changeLimitsVolume(0,20);
}else{
K3.changeLimitsVolume(0,10);
}
K3.updateRotation(keyArrayCopy[3] & 0x1, keyArrayCopy[3] & 0x2);
__atomic_store_n(&volume, K3.getRotation(), __ATOMIC_RELAXED);
volumeHistory = (volumeHistory << 1) + ((keyArrayCopy[5]&0x2)>>1);
volumeFinerNext = ((!(volumeHistory==1))&volumeFiner) | ((volumeHistory==1)&!volumeFiner);
__atomic_store_n(&volumeFiner, volumeFinerNext, __ATOMIC_RELAXED);
};
currentStepSize = notes[getTopKey()].stepSize; // Atomic Store
K0.updateRotation(keyArray[4] & 0x4, keyArray[4] & 0x8);
octave = K0.getRotation()/2;
K1.updateRotation(keyArray[4] & 0x1, keyArray[4] & 0x2);
wave = K1.getRotation()/2;
K3.updateRotation(keyArray[3] & 0x1, keyArray[3] & 0x2);
volume = K3.getRotation();
volumeHistory = (volumeHistory << 1) + ((keyArray[5]&0x2)>>1);
volumeFiner = ((!(volumeHistory==1))&volumeFiner) | ((volumeHistory==1)&!volumeFiner);
}
}
void displayUpdateTask(void * pvParameters){
uint8_t keyArrayCopy[7];
const TickType_t xFrequency = 100/portTICK_PERIOD_MS;
// Task containing display graphics and update code
void displayUpdateTask(void *pvParameters) {
const TickType_t xFrequency = 100 / portTICK_PERIOD_MS;
TickType_t xLastWakeTime = xTaskGetTickCount();
while(1){
while (1) {
vTaskDelayUntil(&xLastWakeTime, xFrequency);
uint32_t rxID;
xSemaphoreTake(keyArrayMutex, portMAX_DELAY);
memcpy(keyArrayCopy, (void*)keyArray, 7);
xSemaphoreGive(keyArrayMutex);
u8g2.clearBuffer(); // clear the internal memory
u8g2.setFont(u8g2_font_profont12_mf); // choose a suitable font
u8g2.setCursor(2, 10); // set the cursor position
u8g2.print(currentStepSize); // Print the current frequency
//digitalToggle(LED_BUILTIN);
u8g2.clearBuffer(); // clear the internal memory
u8g2.setFont(u8g2_font_profont12_mf); // choose a suitable font
uint16_t key = getTopKey();
u8g2.drawStr(2, 10, notes[key].note.c_str()); // Print the current key
digitalToggle(LED_BUILTIN);
u8g2.setCursor(2, 20);
for (uint8_t i = 0; i < 7; i++) {
u8g2.print(keyArrayCopy[6-i], HEX);
}
u8g2.print(keyArray[i], HEX);
};
u8g2.setCursor(100, 10);
u8g2.print((char)RX_Message[0]);
u8g2.print(RX_Message[1]);
u8g2.print(RX_Message[2], HEX);
// Print waveform icon
int K1_rot = K1.getRotation();
if(K1_rot<2){
@ -283,39 +326,43 @@ void setup() {
u8g2.begin();
setOutMuxBit(DEN_BIT, HIGH); // Enable display power supply
#pragma endregion
// Initialise UART
#pragma region UART Setup
Serial.begin(115200);
Serial.println("Hello World");
#pragma endregion
#pragma region CAN Setup
msgInQ = xQueueCreate(36, 8);
CAN_Init(true);
setCANFilter(0x123, 0x7ff);
CAN_RegisterRX_ISR(CAN_RX_ISR);
CAN_Start();
#pragma endregion
#pragma region Task Scheduler Setup
TIM_TypeDef *Instance = TIM1;
HardwareTimer *sampleTimer = new HardwareTimer(Instance);
sampleTimer->setOverflow(samplingRate, HERTZ_FORMAT);
sampleTimer->attachInterrupt(sampleISR);
sampleTimer->resume();
TaskHandle_t scanKeysHandle = NULL;
TaskHandle_t displayUpdateHandle = NULL;
TaskHandle_t scanKeysHandle = nullptr;
TaskHandle_t displayUpdateHandle = nullptr;
xTaskCreate(
scanKeysTask, /* Function that implements the task */
"scanKeys", /* Text name for the task */
64, /* Stack size in words, not bytes */
NULL, /* Parameter passed into the task */
2, /* Task priority */
&scanKeysHandle /* Pointer to store the task handle */
scanKeysTask, // Function that implements the task
"scanKeys", // Text name for the task
64, // Stack size in words, not bytes
nullptr, // Parameter passed into the task
2, // Task priority
&scanKeysHandle // Pointer to store the task handle
);
xTaskCreate(
displayUpdateTask, /* Function that implements the task */
"displayUpdate", /* Text name for the task */
256, /* Stack size in words, not bytes */
NULL, /* Parameter passed into the task */
1, /* Task priority */
&displayUpdateHandle /* Pointer to store the task handle */
displayUpdateTask, // Function that implements the task
"displayUpdate", // Text name for the task
256, // Stack size in words, not bytes
nullptr, // Parameter passed into the task
1, // Task priority
&displayUpdateHandle // Pointer to store the task handle
);
keyArrayMutex = xSemaphoreCreateMutex();
vTaskStartScheduler();
#pragma endregion
}
void loop() {}
void loop() {} // No code in loop, as everything is done in the tasks