This commit is contained in:
Kacper 2022-03-25 16:06:28 +00:00
commit a9c40e69f0
4 changed files with 230 additions and 193 deletions

Binary file not shown.

View file

@ -3,14 +3,18 @@
class Knob { class Knob {
private: private:
int rotation; int rotation, rotationInternal;
int minimum, maximum; int minimum, maximum, previousRotation;
bool A, B; bool A, B;
bool rotPlusOnePrev, rotMinOnePrev; enum PrevRot {
NONE,
CW,
ACW,
};
public: public:
Knob(int minimum, int max); Knob(int minimum, int maximum, int initialRotation);
Knob(int minimum, int max, int initialRotation); Knob(int minimum, int maximum) : Knob(minimum, maximum, minimum) {} // Delegate to full constructor, using minimum as initial rotation
int getRotation(); int getRotation();

View file

@ -1,23 +1,13 @@
#include <knob> #include <knob>
Knob::Knob(int minimum, int maximum) { Knob::Knob(int minimum, int maximum, int initialRotation) {
Knob::minimum = minimum; Knob::minimum = minimum;
Knob::maximum = maximum; Knob::maximum = maximum;
Knob::A = false; Knob::A = false;
Knob::B = false; Knob::B = false;
Knob::rotPlusOnePrev = false; Knob::previousRotation = NONE;
Knob::rotMinOnePrev = false; Knob::rotation = initialRotation;
Knob::rotation = 0; Knob::rotationInternal = initialRotation;
}
Knob::Knob(int minimum, int maximum, int initialRotation) {
Knob::minimum = minimum;
Knob::maximum = maximum;
Knob::A = false;
Knob::B = false;
Knob::rotPlusOnePrev = false;
Knob::rotMinOnePrev = false;
Knob::rotation = initialRotation;
} }
int Knob::getRotation() { int Knob::getRotation() {
@ -25,36 +15,63 @@ int Knob::getRotation() {
}; };
void Knob::updateRotation(bool ANew, bool BNew) { void Knob::updateRotation(bool ANew, bool BNew) {
bool rotPlusOneNew = (!B && !A && !BNew && ANew) || if (A == ANew && B == BNew)
(!B && A && BNew && ANew) || return; // No change, do not update values
(B && !A && !BNew && !ANew) ||
(B && A && BNew && !ANew);
bool rotMinOneNew = (!B && !A && BNew && !ANew) || bool fullstep = (BNew && ANew) || (!BNew && !ANew);
(!B && A && !BNew && !ANew) ||
(B && !A && BNew && ANew) ||
(B && A && !BNew && ANew);
bool impossibleState = (!B && !A && BNew && ANew) || bool cwRot = (!B && !A && !BNew && ANew) ||
(!B && A && BNew && !ANew) || (!B && A && BNew && ANew) ||
(B && !A && !BNew && ANew) || (B && !A && !BNew && !ANew) ||
(B && A && !BNew && !ANew); (B && A && BNew && !ANew);
if (rotPlusOneNew || (impossibleState && rotPlusOnePrev)) bool acwRot = (!B && !A && BNew && !ANew) ||
rotation += 1; (!B && A && !BNew && !ANew) ||
if (rotMinOneNew || (impossibleState && rotMinOnePrev)) (B && !A && BNew && ANew) ||
rotation -= 1; (B && A && !BNew && ANew);
if (rotation < minimum)
rotation = minimum;
if (rotation > maximum)
rotation = maximum;
bool impossible = (!B && !A && BNew && ANew) ||
(!B && A && BNew && !ANew) ||
(B && !A && !BNew && ANew) ||
(B && A && !BNew && !ANew);
if (cwRot) {
if (previousRotation == CW && fullstep) {
rotationInternal++;
} else if (previousRotation == ACW) {
previousRotation = NONE;
} else {
previousRotation = CW;
}
} else if (acwRot) {
if (previousRotation == ACW && fullstep) {
rotationInternal--;
} else if (previousRotation == CW) {
previousRotation = NONE;
} else {
previousRotation = ACW;
}
} else if (impossible) {
if (fullstep) {
switch (previousRotation) {
case NONE: // Step skipped and no previous direction
break;
case CW:
rotationInternal++;
break;
case ACW:
rotationInternal--;
break;
}
}
}
A = ANew; A = ANew;
B = BNew; B = BNew;
if (!impossibleState) { if (rotationInternal < minimum)
rotPlusOnePrev = rotPlusOneNew; rotationInternal = minimum;
rotMinOnePrev = rotMinOneNew; if (rotationInternal > maximum)
} rotationInternal = maximum;
rotation = rotationInternal;
} }
void Knob::changeLimitsVolume(int newMinimum, int newMaximum) { void Knob::changeLimitsVolume(int newMinimum, int newMaximum) {

View file

@ -12,27 +12,30 @@ const uint32_t interval = 10; // Display update interval
const uint32_t samplingRate = 44100; // Sampling rate const uint32_t samplingRate = 44100; // Sampling rate
const uint32_t canID = 0x123; const uint32_t canID = 0x123;
// Variables // Variables
std::atomic<bool> isMainSynth;
std::atomic<int32_t> currentStepSize; std::atomic<int32_t> currentStepSize;
std::atomic<uint8_t> keyArray[7]; std::atomic<uint8_t> keyArray[7];
std::atomic<uint8_t> octave; std::atomic<uint8_t> octave;
std::atomic<uint8_t> selectedWaveform;
std::atomic<int> latestKey;
std::atomic<int8_t> volume; std::atomic<int8_t> volume;
std::atomic<bool> volumeFiner; std::atomic<bool> volumeFiner;
std::atomic<int8_t> wave;
int8_t volumeHistory = 0; int8_t volumeHistory = 0;
QueueHandle_t msgInQ; QueueHandle_t msgInQ;
uint8_t RX_Message[8] = {0}; uint8_t RX_Message[8] = {0};
std::atomic<bool> bufferAactive;
int32_t bufferA[220];
int32_t bufferB[220];
// Objects // Objects
U8G2_SSD1305_128X32_NONAME_F_HW_I2C u8g2(U8G2_R0); // Display driver object U8G2_SSD1305_128X32_NONAME_F_HW_I2C u8g2(U8G2_R0); // Display Driver Object
Knob K0(2,14,8); //Octave encoder Knob K0(1, 7, 4); // Octave Knob Object
Knob K1(0,6); //Waveform encoder Knob K1(0, 3, 1); // Waveform Knob Object
Knob K3(0,10); //Volume encoder Knob K2(0, 1); // Send / Receive Knob Object
Knob K3(0, 16); // Volume Knob Object
// Program Specific Structures // Program Specific Structures
typedef struct{ const int32_t stepSizes[85] = {0, 3185014, 3374405, 3575058, 3787642, 4012867, 4251484, 4504291, 4772130, 5055895, 5356535, 5675051, 6012507, 6370029, 6748811, 7150116, 7575284, 8025734, 8502969, 9008582, 9544260, 10111791, 10713070, 11350102, 12025014, 12740059, 13497622, 14300233, 15150569, 16051469, 17005939, 18017164, 19088521, 20223583, 21426140, 22700205, 24050029, 25480118, 26995245, 28600466, 30301138, 32102938, 34011878, 36034329, 38177042, 40447167, 42852281, 45400410, 48100059, 50960237, 53990491, 57200933, 60602277, 64205876, 68023756, 72068659, 76354085, 80894335, 85704562, 90800821, 96200119, 101920475, 107980982, 114401866, 121204555, 128411753, 136047513, 144137319, 152708170, 161788670, 171409125, 181601642, 192400238, 203840951, 215961965, 228803732, 242409110, 256823506, 272095026, 288274638, 305416340, 323577341, 342818251, 363203285, 384800476};
int32_t stepSize; const char *notes[85] = {"None", "C1", "C1#", "D1", "D1#", "E1", "F1", "F1#", "G1", "G1#", "A1", "A1#", "B1", "C2", "C2#", "D2", "D2#", "E2", "F2", "F2#", "G2", "G2#", "A2", "A2#", "B2", "C3", "C3#", "D3", "D3#", "E3", "F3", "F3#", "G3", "G3#", "A3", "A3#", "B3", "C4", "C4#", "D4", "D4#", "E4", "F4", "F4#", "G4", "G4#", "A4", "A4#", "B4", "C5", "C5#", "D5", "D5#", "E5", "F5", "F5#", "G5", "G5#", "A5", "A5#", "B5", "C6", "C6#", "D6", "D6#", "E6", "F6", "F6#", "G6", "G6#", "A6", "A6#", "B6", "C7", "C7#", "D7", "D7#", "E7", "F7", "F7#", "G7", "G7#", "A7", "A7#", "B7"};
std::string note; std::atomic<bool> activeNotes[85] = {{0}};
} Note;
const Note notes[] = {
{0, "None"}, {3185014, "C1"}, {3374405, "C1#"}, {3575058, "D1"}, {3787642, "D1#"}, {4012867, "E1"}, {4251484, "F1"}, {4504291, "F1#"}, {4772130, "G1"}, {5055895, "G1#"}, {5356535, "A1"}, {5675051, "A1#"}, {6012507, "B1"}, {6370029, "C2"}, {6748811, "C2#"}, {7150116, "D2"}, {7575284, "D2#"}, {8025734, "E2"}, {8502969, "F2"}, {9008582, "F2#"}, {9544260, "G2"}, {10111791, "G2#"}, {10713070, "A2"}, {11350102, "A2#"}, {12025014, "B2"}, {12740059, "C3"}, {13497622, "C3#"}, {14300233, "D3"}, {15150569, "D3#"}, {16051469, "E3"}, {17005939, "F3"}, {18017164, "F3#"}, {19088521, "G3"}, {20223583, "G3#"}, {21426140, "A3"}, {22700205, "A3#"}, {24050029, "B3"}, {25480118, "C4"}, {26995245, "C4#"}, {28600466, "D4"}, {30301138, "D4#"}, {32102938, "E4"}, {34011878, "F4"}, {36034329, "F4#"}, {38177042, "G4"}, {40447167, "G4#"}, {42852281, "A4"}, {45400410, "A4#"}, {48100059, "B4"}, {50960237, "C5"}, {53990491, "C5#"}, {57200933, "D5"}, {60602277, "D5#"}, {64205876, "E5"}, {68023756, "F5"}, {72068659, "F5#"}, {76354085, "G5"}, {80894335, "G5#"}, {85704562, "A5"}, {90800821, "A5#"}, {96200119, "B5"}, {101920475, "C6"}, {107980982, "C6#"}, {114401866, "D6"}, {121204555, "D6#"}, {128411753, "E6"}, {136047513, "F6"}, {144137319, "F6#"}, {152708170, "G6"}, {161788670, "G6#"}, {171409125, "A6"}, {181601642, "A6#"}, {192400238, "B6"}, {203840951, "C7"}, {215961965, "C7#"}, {228803732, "D7"}, {242409110, "D7#"}, {256823506, "E7"}, {272095026, "F7"}, {288274638, "F7#"}, {305416340, "G7"}, {323577341, "G7#"}, {342818251, "A7"}, {363203285, "A7#"}, {384800476, "B7"}};
enum waveform { enum waveform {
SQUARE = 0, SQUARE = 0,
SAWTOOTH, SAWTOOTH,
@ -50,22 +53,39 @@ const unsigned char waveforms[4][18] = {
0x10, 0xc0, 0x18, 0x80, 0x08, 0x80, 0x0d, 0x00, 0x07} // Sine Wave 0x10, 0xc0, 0x18, 0x80, 0x08, 0x80, 0x0d, 0x00, 0x07} // Sine Wave
}; };
const unsigned char volumes[6][18] = { const unsigned char volumes[6][18] = {
{0x10, 0x02, 0x98, 0x04, 0x1c, 0x05, 0x5f, 0x09, 0x5f, {0x10, 0x00, 0x18, 0x00, 0x5c, 0x04, 0x9f, 0x02, 0x1f,
0x09, 0x5f, 0x09, 0x1c, 0x05, 0x98, 0x04, 0x10, 0x02}, // volume max 0x01, 0x9f, 0x02, 0x5c, 0x04, 0x18, 0x00, 0x10, 0x00}, // mute
{0x10, 0x00, 0x98, 0x00, 0x1c, 0x01, 0x5f, 0x01, 0x5f,
0x01, 0x5f, 0x01, 0x1c, 0x01, 0x98, 0x00, 0x10, 0x00}, // volume mid higher
{0x10, 0x00, 0x18, 0x00, 0x1c, 0x01, 0x5f, 0x01, 0x5f,
0x01, 0x5f, 0x01, 0x1c, 0x01, 0x18, 0x00, 0x10, 0x00}, // volume mid lower
{0x10, 0x00, 0x18, 0x00, 0x1c, 0x00, 0x5f, 0x00, 0x5f,
0x00, 0x5f, 0x00, 0x1c, 0x00, 0x18, 0x00, 0x10, 0x00}, // volume low
{0x10, 0x00, 0x18, 0x00, 0x1c, 0x00, 0x1f, 0x00, 0x5f, {0x10, 0x00, 0x18, 0x00, 0x1c, 0x00, 0x1f, 0x00, 0x5f,
0x00, 0x1f, 0x00, 0x1c, 0x00, 0x18, 0x00, 0x10, 0x00}, // volume lowest 0x00, 0x1f, 0x00, 0x1c, 0x00, 0x18, 0x00, 0x10, 0x00}, // volume lowest
{0x10, 0x00, 0x18, 0x00, 0x5c, 0x04, 0x9f, 0x02, 0x1f, {0x10, 0x00, 0x18, 0x00, 0x1c, 0x00, 0x5f, 0x00, 0x5f,
0x01, 0x9f, 0x02, 0x5c, 0x04, 0x18, 0x00, 0x10, 0x00} // mute 0x00, 0x5f, 0x00, 0x1c, 0x00, 0x18, 0x00, 0x10, 0x00}, // volume low
{0x10, 0x00, 0x18, 0x00, 0x1c, 0x01, 0x5f, 0x01, 0x5f,
0x01, 0x5f, 0x01, 0x1c, 0x01, 0x18, 0x00, 0x10, 0x00}, // volume mid lower
{0x10, 0x00, 0x98, 0x00, 0x1c, 0x01, 0x5f, 0x01, 0x5f,
0x01, 0x5f, 0x01, 0x1c, 0x01, 0x98, 0x00, 0x10, 0x00}, // volume mid higher
{0x10, 0x02, 0x98, 0x04, 0x1c, 0x05, 0x5f, 0x09, 0x5f,
0x09, 0x5f, 0x09, 0x1c, 0x05, 0x98, 0x04, 0x10, 0x02}, // volume max
}; };
const unsigned char icon_bits[] = { const unsigned char icon_bits[] = {
0x00, 0x00, 0x00, 0x00, 0xcc, 0x00, 0xcc, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xcc, 0x00, 0xcc, 0x00, 0x00, 0x00,
0x00, 0x00, 0x02, 0x01, 0x02, 0x01, 0xfe, 0x01, 0x00, 0x00}; 0x00, 0x00, 0x02, 0x01, 0x02, 0x01, 0xfe, 0x01, 0x00, 0x00};
const int8_t sinLUT[256] = {
0, 3, 6, 9, 12, 15, 18, 21, 24, 28, 31, 34, 37, 40, 43, 46,
48, 51, 54, 57, 60, 63, 65, 68, 71, 73, 76, 78, 81, 83, 85, 88,
90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 109, 111, 112, 114, 115, 117,
118, 119, 120, 121, 122, 123, 124, 124, 125, 126, 126, 127, 127, 127, 127, 127,
127, 127, 127, 127, 127, 127, 126, 126, 125, 124, 124, 123, 122, 121, 120, 119,
118, 117, 115, 114, 112, 111, 109, 108, 106, 104, 102, 100, 98, 96, 94, 92,
90, 88, 85, 83, 81, 78, 76, 73, 71, 68, 65, 63, 60, 57, 54, 51,
48, 46, 43, 40, 37, 34, 31, 28, 24, 21, 18, 15, 12, 9, 6, 3,
0, -4, -7, -10, -13, -16, -19, -22, -25, -29, -32, -35, -38, -41, -44, -47,
-49, -52, -55, -58, -61, -64, -66, -69, -72, -74, -77, -79, -82, -84, -86, -89,
-91, -93, -95, -97, -99, -101, -103, -105, -107, -109, -110, -112, -113, -115, -116, -118,
-119, -120, -121, -122, -123, -124, -125, -125, -126, -127, -127, -128, -128, -128, -128, -128,
-128, -128, -128, -128, -128, -128, -127, -127, -126, -125, -125, -124, -123, -122, -121, -120,
-119, -118, -116, -115, -113, -112, -110, -109, -107, -105, -103, -101, -99, -97, -95, -93,
-91, -89, -86, -84, -82, -79, -77, -74, -72, -69, -66, -64, -61, -58, -55, -52,
-49, -47, -44, -41, -38, -35, -32, -29, -25, -22, -19, -16, -13, -10, -7, -4};
#pragma endregion #pragma endregion
#pragma region Pin Definitions #pragma region Pin Definitions
@ -124,81 +144,77 @@ void setRow(const uint8_t rowIdx) {
digitalWrite(REN_PIN, HIGH); digitalWrite(REN_PIN, HIGH);
} }
// Scales output signal according to global volume value, to range 0-255
uint32_t scaleVolume(uint32_t Vout){ uint32_t scaleVolume(uint32_t Vout) {
uint32_t newVout = 0; uint32_t newVout = 0;
if(volumeFiner){ if (volumeFiner) {
newVout = (Vout*12*volume) >> 16; newVout = (Vout * 12 * volume) >> 16;
}else{ // 25 = floor( (1/10) << 8 ) } else { // 25 = floor( (1/10) << 8 )
newVout = (Vout*25*volume) >> 16; //scale by 2*8 cuz 16-bit*8-bit=24-bit -> scale by 16 to get to 8 newVout = (Vout * 25 * volume) >> 16; // scale by 2*8 cuz 16-bit*8-bit=24-bit -> scale by 16 to get to 8
} }
return newVout; return newVout;
} }
// Returns key value (as notes[] index) of highest currently pressed key
uint16_t getTopKey() {
uint16_t topKey = 0;
for (uint8_t i = 0; i < 3; i++) {
for (uint8_t j = 0; j < 4; j++) {
if (keyArray[i] & (0x1 << j)) {
topKey = (octave - 1) * 12 + i * 4 + j + 1;
}
}
}
return topKey;
}
// Interrupt driven routine to send waveform to DAC // Interrupt driven routine to send waveform to DAC
void sampleISR(){ void sampleISR() {
static int32_t phaseAcc = 0; static int32_t phaseAcc = 0;
phaseAcc += currentStepSize; phaseAcc += currentStepSize;
int32_t Vout = 0; int32_t Vout = 0;
if(wave==SAWTOOTH){ if (selectedWaveform == SAWTOOTH) {
Vout = phaseAcc >> 16; Vout = phaseAcc >> 16;
}else if(wave==SQUARE){ } else if (selectedWaveform == SQUARE) {
if(phaseAcc<0){ if (phaseAcc < 0) {
Vout = 0x8000; Vout = 0x00007FFF;
}else{ } else {
Vout = 0; Vout = 0xFFFF8000;
} }
}else if(wave==TRIANGLE){ } else if (selectedWaveform == TRIANGLE) {
//TODO Vout = (abs(phaseAcc) - 1073741824) >> 15;
}else if(wave==SINE){ } else if (selectedWaveform == SINE) {
//TODO Vout = (sinLUT[(uint32_t)phaseAcc >> 24]) << 8;
} }
Vout = scaleVolume(Vout); Vout = scaleVolume(Vout);
analogWrite(OUTR_PIN, Vout + 128); analogWrite(OUTR_PIN, Vout + 128);
} }
// void CAN_RX_ISR() { //
// uint8_t ISR_RX_Message[8]; void CAN_RX_ISR() {
// uint32_t ISR_rxID; uint8_t ISR_RX_Message[8];
// CAN_RX(ISR_rxID, ISR_RX_Message); uint32_t ISR_rxID;
// xQueueSendFromISR(msgInQ, ISR_RX_Message, nullptr); CAN_RX(ISR_rxID, ISR_RX_Message);
// } xQueueSendFromISR(msgInQ, ISR_RX_Message, nullptr);
}
// void decodeTask(void *pvParameters) { // Task to update activeNotes[] and currentStepSize based on received CAN message
// while (1) { void decodeTask(void *pvParameters) {
// xQueueReceive(msgInQ, RX_Message, portMAX_DELAY); while (1) {
// if (RX_Message[0] == 0x50) { // Pressed xQueueReceive(msgInQ, RX_Message, portMAX_DELAY);
// currentStepSize = notes[(RX_Message[1] - 1) * 12 + RX_Message[2]].stepSize; if (RX_Message[0] == 0x50) { // Pressed
// } else { // Released activeNotes[(RX_Message[1] - 1) * 12 + RX_Message[2]] = true;
// currentStepSize = 0; latestKey = (RX_Message[1] - 1) * 12 + RX_Message[2];
// } currentStepSize = stepSizes[latestKey];
// } } else { // Released
// } activeNotes[(RX_Message[1] - 1) * 12 + RX_Message[2]] = false;
if (latestKey == (RX_Message[1] - 1) * 12 + RX_Message[2]) {
latestKey = 0;
currentStepSize = stepSizes[latestKey]; // Atomic Store
}
}
}
}
// void keyChangedSendTXMessage(uint8_t octave, uint8_t key, bool pressed) { //
// uint8_t TX_Message[8] = {0}; void keyChangedSendTXMessage(uint8_t octave, uint8_t key, bool pressed) {
// if (pressed) { uint8_t TX_Message[8] = {0};
// TX_Message[0] = 0x50; // "P" if (pressed) {
// } else { TX_Message[0] = 0x50; // "P"
// TX_Message[0] = 0x52; // "R" } else {
// } TX_Message[0] = 0x52; // "R"
// TX_Message[1] = octave; }
// TX_Message[2] = key; TX_Message[1] = octave;
// CAN_TX(canID, TX_Message); TX_Message[2] = key;
// } CAN_TX(canID, TX_Message);
}
// Task to update keyArray values at a higher priority // Task to update keyArray values at a higher priority
void scanKeysTask(void *pvParameters) { void scanKeysTask(void *pvParameters) {
@ -215,27 +231,30 @@ void scanKeysTask(void *pvParameters) {
continue; continue;
} else { } else {
keyArray[i] = newRow; keyArray[i] = newRow;
for (uint8_t j = 0; j < 4; j++) { if (i < 3) {
if ((oldRow & (0x1 << j)) ^ (newRow & (0x1 << j))) { for (uint8_t j = 0; j < 4; j++) {
//keyChangedSendTXMessage(octave, i * 4 + j + 1, newRow & (0x1 << j)); if ((oldRow & (0x1 << j)) ^ (newRow & (0x1 << j))) {
keyChangedSendTXMessage(octave, i * 4 + j + 1, newRow & (0x1 << j));
}
} }
} }
} }
}; }
if(volumeFiner){ if (volumeFiner) {
K3.changeLimitsVolume(0,20); K3.changeLimitsVolume(0, 10);
}else{ } else {
K3.changeLimitsVolume(0,10); K3.changeLimitsVolume(0, 5);
}; }
currentStepSize = notes[getTopKey()].stepSize; // Atomic Store
K0.updateRotation(keyArray[4] & 0x4, keyArray[4] & 0x8); K0.updateRotation(keyArray[4] & 0x4, keyArray[4] & 0x8);
octave = K0.getRotation()/2;
K1.updateRotation(keyArray[4] & 0x1, keyArray[4] & 0x2); K1.updateRotation(keyArray[4] & 0x1, keyArray[4] & 0x2);
wave = K1.getRotation()/2; K2.updateRotation(keyArray[3] & 0x4, keyArray[3] & 0x8);
K3.updateRotation(keyArray[3] & 0x1, keyArray[3] & 0x2); K3.updateRotation(keyArray[3] & 0x1, keyArray[3] & 0x2);
octave = K0.getRotation();
selectedWaveform = K1.getRotation();
isMainSynth = !K2.getRotation();
volume = K3.getRotation(); volume = K3.getRotation();
volumeHistory = (volumeHistory << 1) + ((keyArray[5]&0x2)>>1); volumeHistory = (volumeHistory << 1) + ((keyArray[5] & 0x2) >> 1);
volumeFiner = ((!(volumeHistory==1))&volumeFiner) | ((volumeHistory==1)&!volumeFiner); volumeFiner = ((!(volumeHistory == 1)) & volumeFiner) | ((volumeHistory == 1) & !volumeFiner);
} }
} }
@ -245,65 +264,49 @@ void displayUpdateTask(void *pvParameters) {
TickType_t xLastWakeTime = xTaskGetTickCount(); TickType_t xLastWakeTime = xTaskGetTickCount();
while (1) { while (1) {
vTaskDelayUntil(&xLastWakeTime, xFrequency); vTaskDelayUntil(&xLastWakeTime, xFrequency);
uint32_t rxID; u8g2.clearBuffer(); // clear the internal memory
u8g2.setFont(u8g2_font_profont12_mf); // choose a suitable font
u8g2.drawStr(2, 10, notes[latestKey]); // Print the currently pressed keys
u8g2.clearBuffer(); // clear the internal memory // u8g2.setCursor(2, 20);
u8g2.setFont(u8g2_font_profont12_mf); // choose a suitable font // for (uint8_t i = 0; i < 7; i++) {
uint16_t key = getTopKey(); // u8g2.print(keyArray[i], HEX);
u8g2.drawStr(2, 10, notes[key].note.c_str()); // Print the current key // };
digitalToggle(LED_BUILTIN); // u8g2.setCursor(100, 10); // Debug print of received CAN message
u8g2.setCursor(2, 20); // u8g2.print((char)RX_Message[0]);
for (uint8_t i = 0; i < 7; i++) { // u8g2.print(RX_Message[1]);
u8g2.print(keyArray[i], HEX); // u8g2.print(RX_Message[2], HEX);
};
u8g2.setCursor(100, 10);
u8g2.print((char)RX_Message[0]);
u8g2.print(RX_Message[1]);
u8g2.print(RX_Message[2], HEX);
// Print waveform icon // Print current octave number above knob 0
int K1_rot = K1.getRotation(); u8g2.drawStr(2, 30, "O:");
if(K1_rot<2){
u8g2.drawXBM(38,22,13,9,waveforms[SQUARE]);
}else if(K1_rot<4){
u8g2.drawXBM(38,22,13,9,waveforms[SAWTOOTH]);
}else if(K1_rot<6){
u8g2.drawXBM(38,22,13,9,waveforms[TRIANGLE]);
}else if(K1_rot==6){
u8g2.drawXBM(38,22,13,9,waveforms[SINE]);
};
// Print octave number
u8g2.setCursor(2, 30);
u8g2.print("O:");
u8g2.setCursor(14, 30); u8g2.setCursor(14, 30);
u8g2.print(octave); u8g2.print(octave);
// Print volume indicator // Draw currently selected waveform above knob 1
if(!volumeFiner){ u8g2.drawXBM(38, 22, 13, 9, waveforms[K1.getRotation()]);
if(volume==0){
u8g2.drawXBM(116,22,13,9,volumes[5]); // Print Send / Receive State above knob 2
}else if(volume<3){ if (K2.getRotation()) {
u8g2.drawXBM(116,22,13,9,volumes[4]); u8g2.drawStr(74, 30, "SEND");
}else if(volume<5){ } else {
u8g2.drawXBM(116,22,13,9,volumes[3]); u8g2.drawStr(74, 30, "RECV");
}else if(volume<7){ }
u8g2.drawXBM(116,22,13,9,volumes[2]);
}else if(volume<9){ // Print volume indicator above knob 3
u8g2.drawXBM(116,22,13,9,volumes[1]); if (!volumeFiner) {
}else if(volume<11){ u8g2.drawXBM(116, 22, 13, 9, volumes[volume]);
u8g2.drawXBM(116,22,13,9,volumes[0]); } else {
};
}else{
u8g2.setCursor(117, 30); u8g2.setCursor(117, 30);
u8g2.print(volume/2); u8g2.print(volume);
}; }
u8g2.sendBuffer(); // transfer internal memory to the display
u8g2.sendBuffer(); // transfer internal memory to the display
digitalToggle(LED_BUILTIN); // Toggle LED to show display update rate
} }
} }
// Arduino framework setup function, sets up Pins, Display, UART, CAN and Tasks
void setup() { void setup() {
octave = 4;
#pragma region Pin Setup #pragma region Pin Setup
pinMode(RA0_PIN, OUTPUT); pinMode(RA0_PIN, OUTPUT);
pinMode(RA1_PIN, OUTPUT); pinMode(RA1_PIN, OUTPUT);
@ -320,6 +323,10 @@ void setup() {
pinMode(JOYX_PIN, INPUT); pinMode(JOYX_PIN, INPUT);
pinMode(JOYY_PIN, INPUT); pinMode(JOYY_PIN, INPUT);
#pragma endregion #pragma endregion
#pragma region Variables Setup
isMainSynth = true;
octave = 4;
#pragma endregion
#pragma region Display Setup #pragma region Display Setup
setOutMuxBit(DRST_BIT, LOW); // Assert display logic reset setOutMuxBit(DRST_BIT, LOW); // Assert display logic reset
delayMicroseconds(2); delayMicroseconds(2);
@ -331,13 +338,13 @@ void setup() {
Serial.begin(115200); Serial.begin(115200);
Serial.println("Hello World"); Serial.println("Hello World");
#pragma endregion #pragma endregion
// #pragma region CAN Setup #pragma region CAN Setup
// msgInQ = xQueueCreate(36, 8); msgInQ = xQueueCreate(36, 8);
// CAN_Init(true); CAN_Init(true);
// setCANFilter(0x123, 0x7ff); setCANFilter(0x123, 0x7ff);
// CAN_RegisterRX_ISR(CAN_RX_ISR); CAN_RegisterRX_ISR(CAN_RX_ISR);
// CAN_Start(); CAN_Start();
// #pragma endregion #pragma endregion
#pragma region Task Scheduler Setup #pragma region Task Scheduler Setup
TIM_TypeDef *Instance = TIM1; TIM_TypeDef *Instance = TIM1;
HardwareTimer *sampleTimer = new HardwareTimer(Instance); HardwareTimer *sampleTimer = new HardwareTimer(Instance);
@ -346,14 +353,23 @@ void setup() {
sampleTimer->resume(); sampleTimer->resume();
TaskHandle_t scanKeysHandle = nullptr; TaskHandle_t scanKeysHandle = nullptr;
TaskHandle_t displayUpdateHandle = nullptr; TaskHandle_t displayUpdateHandle = nullptr;
TaskHandle_t decodeHandle = nullptr;
xTaskCreate( xTaskCreate(
scanKeysTask, // Function that implements the task scanKeysTask, // Function that implements the task
"scanKeys", // Text name for the task "scanKeys", // Text name for the task
64, // Stack size in words, not bytes 64, // Stack size in words, not bytes
nullptr, // Parameter passed into the task nullptr, // Parameter passed into the task
2, // Task priority 3, // Task priority
&scanKeysHandle // Pointer to store the task handle &scanKeysHandle // Pointer to store the task handle
); );
xTaskCreate(
decodeTask, // Function that implements the task
"decode", // Text name for the task
256, // Stack size in words, not bytes
nullptr, // Parameter passed into the task
2, // Task priority
&decodeHandle // Pointer to store the task handle
);
xTaskCreate( xTaskCreate(
displayUpdateTask, // Function that implements the task displayUpdateTask, // Function that implements the task
"displayUpdate", // Text name for the task "displayUpdate", // Text name for the task