Imperial College
London

CPU Project Report

Aadi Desai, Benjamin Ramhorst, Kacper Neumann

ELEC40006 - Electronics Design Project 1 2019-2020

Dr Edward Stott, Mrs Esther Perea

Imperial College London

Submission date: Sunday, 14t June 2020

Real word count: ~10,862



TABLE OF CONTENTS

1. INTRODUCGTION ....comiuiismsmsmssssesssmssssssssmssssssssssssassssssssssssssssssssssssssssassssssssassesssssss sesssmssssssssmsssassssssssassensansassenes 4
2. PROBLEM DEFINITION ...ucoiiiiisismsssmsmsmssssnsssmsssssssssssssssssssssssssssssssssssssssssassssssssassssssssssssssssssssssssssssasssssnsans 5
2. 1. PROJECT OUTLINE uttttettreseseusssesssssssessssssssessssesssssssssessssssssssssesssssssssesssssssssssssassssssssessssassesssssssssssssssessssesssssssssssnssssnens 5
2.2. PROJECT SPECIFICATION woutivurieuisesessssssssssssssssssasssssssassssessasssssssassssesssssssassassssessessssessassssasssssssasssssssssnsssesssssssssnnes 6
3. PROJECT PLANNING AND MANAGEMENT .....cccoismmsmsmsmssssssssmsssssssssssssssssssssssssssssssssssssssssasassssssssassenes 8
3.1. PROJECT AIMS AND MILESTONES....osiuirtusisusssssssssssssssssssassssssasssssssssssssssasssssssesssssssasssssssesssssssssssssssssssssssssssnes 8
3.2. TEAM ROLES ....ttesuetrstressressseaseseassssasessssesssssssssesssesssssessssessssessessssessssessseeasssesssesssssssessssssesssessssesssssessssessssssnsssssssssneas 9
3.3. COMMUNICATION weuteurereureresresssresssressssesssresssessssssssssssessssessssessssesssssssessssessssesssesssssessssesssssssssssssssssssssessssensssesssesses 10
2R o 91 0 10
4. PROJECT TIMELINE .....cciiiiisissssssssssssssssss s ssss s sess s sesssms s s ssss s sesssssassesssmssssesssmsssanssssssasss 14
5. DESIGN PROCESS.......coimmmmsismsmamsssssmssssssssssssssssssssssssssssasssssssssssssssssssssssssssss ssssssssssssssssssssssssssssssssssssssssses 20
5.1. OVERVIEW OF THE CPUL.coniiriesisssssssssssssssss st sssssssssss s ssssssasssssssssassss 20
5.2, INSTRUCTION SET ..ueureureureusesesessssssssssessessessssseasssssssssssasssssessssssssssssssssssssstssssssesssssnsasssssssssstastastassessessssassassassnsantns 21
5.2.1. OVerview and INItIal I@aS ... eeeeeeeesseesusessssesssssessssssssssesessssssssssssssssssssss s s sessss s s sssssesssssesssssassasasssaess 21
5.2.2. Load/store operations..........n:
5.2.3. Arithmetic operations..........nn
5.2.4. LLOZICA] OPETATIONS cocvvurreerusreeessseseesssseessssssessssssssessssessssssesessssse s sas s sss s AR S R R R R R E R
5.2.5. Shift OPerations ...
5.2.6. JUMP OPETatiONS ... ceeeeemeerseeeseessseesssesssseesssssessesesns
5.2.7. Stack OPerations .....ceeeeeesmessssesssmsesssssessesesns
5.2.8. Other 0perations.....eeeeeessssesssseessssessesesns
5.3, STATE MACHINE .coueesueesseeesseessseessseesseeessessssessssesssseesssessseesssessssessasessaseesssses seesssessssessssesssssssseesssessssessasessassssssessseees
5.4. INSTRUCTION MEMORY UNIT ...vovvtrerrerressesseasesssssssssssssssssssssssessssssssssssstssssssessssssssssssssssssssssssassessesssssssassssssssnsns 29
5.5. DATA MEMORY UNIT ceovruuserusessseessseesssesssessssessssessssessssessssssssessssessssesssssessssss sessssessssesssssssssssssssss sessssessasessasssssssssssnes 29
5.6. REGISTER FILE ..ouuveuueesseeesseessseessseesssesssseessessssessssesssseesssessseesssessssessasesssseessssssseesssessssessasessssessssesssessssassasessasssssssssssees 30
5.7. ADD 1 LOGIC BLOCK ttrtutsesurusesssssssssssssssssssssssssssssssssssssssssssssssssssss ssssss s st s ss s s st sessssss s sassspasssssnsss 30
TR S o000 0] 42PN 30
5.9. ARITHMETIC LOGIC UNIT (ALUY cerrerreerreemeermeeemeessseesseesssesssessmseessssesssssssessssessssesssssssssessssssssessssessssessasssssssssseees 31
5.10. MULTIPLIER ctututstsssssssssssssssssssssssssssss s sssss s sss s st sssss s s bbbt s asssp s
5.10.1. Initial id€as ..reeereermeressreeessreesseeesseessseesssseesanas
5.10.2. Lookup table and Karatsuba’s algOrithim .........rcerereessseesseesssessesesssesssssessssesssssesssssessssssssssssssanees 33
5.10.2. Final implementation and VerifiCation. ... cceeessssesssessssesssesesssessssssssssesssssssssssesssssessssssssssssssasess 34
5.1 1. STACK e eteuseermseeemseessseesseeesseesssessssesssseesseeesseesssessssesssseessseesseees e esses s R AR LR R SRR R R R RS RS e R E e 34
5.12. MULTIPLEXERS woututussssssstsusssssssssssssssssssssssssssssssssssssssssssesss s sssss s s s s bbb s spassss s 35
6. FINAL ANALYSIS OF DESIGN ...cooiiiiimsmsniscsmsmsssssssmsssssssssssssssssssssssssssssssssssssssssssassessssssssssssssssassssssasasenes 36
6.1. BENCHMARK TESTS ..cuvtreureesrerssresssresssressssesssssssssssssssssesssssssssessssesssssssssssssssssesssessssessssessssssssssssssssssssssessssessssessssesses 36
6.2. MAXIMUM CLOCK FREQUENCY TESTS vuucuuiruerssisssssesssssssssssssssssssssssasssssssssssssssssssssssssssssssssssssssssssssssssssssssssssses 36
6.3. FPGA AREA AND UTILISATION TESTS.ucueertreurerssrerssrerssresssresssressesessesessensssessssessssessssessssssssssssssssssssessssesssssssssanes 37
6.4. POWER ANALYSIS TESTS ..vueurteurerssressresssresssresssresssssssersssessssessssessssessssesssssssssssessssssssssssssssssssssssssssssssensssesssssssssenses 38
70 3801 2l 8 X O 1 (0 39
7.1 PROJECT SUCCESS wrvurevurereeessesssesssesssssssssssssssssssssssssssssssssassssesssssssesssssssessassssesssssssesssssssesssssssesssssssesssssssesssssssesassssseses 39
7.2 FUTURE WORK uvetrtetreseessesessesssessssessssesssssssssssssssssssssssssssssssesssssssssssssssssssssessssessssesssssssssssssssessssasssssssssesnsssssssssanes 40
7.3 FINAL THOUGHTS ueuvtrestreusesessessssessssessssessssssssssssssssssssssessssessssessssssssssssssssssssssssssessssssssssssssessssssssssssssssssssssssssssssssssanes 40

Page 2 of 59



8. BIBLIOGRAPHY ....conmmmnmmmmmmmmmmmsssssmsss s ssssssssssssssssssssssssssssss s 41

0 TR X o o 0911 ) ) 42
AL CH+ TEST CODES oueureueuersesessessssessessessessessessessessssssssssessessessessessessessesssssssssssssssssssessessessessssssssssssessessssssessessessssssssnses 42
A.1. Calculate Fibonacci NUMDETS USING FECUISION ..ucuuueeeuseermsersseeesseessesesssesessssesssssssssessssssesssssssssesssssesssssessssssssanens 42

A.2. Calculate pseudo-random integers with a linear congruential generator (LCG)...cceeersmeersmeernees 43

A.3. Traverse a linked list t0 fiNd AN ITEM... e eeeeeesseeeseeesseeessesssssesssssss s sesssessss s sssessesssssassssassssssssasesssaans 44
B. FREEHAND [SA MAP......outtitereesersesssssessssssesssssssesssssssesssssssessssssesssesssesssssssesssssssessssessessssessesssssssesssssssesssssssessssssnesas 45
C. COMPLETE BLOCK DIAGRAM FILE....cciiiiirisisinsssenssensssesssesss s ssessssssssssssssssssssssssssssssssssssssssssessssssssssanes 46
D. ASR, ROR AND RRC EXPLAINED ...vutuuesrsssessesssessessesssessessassssssessessssssessssssessassssssessasssssses sesssssssssessssssssssssssssssssases 47
E. CLL AND RTN EXPLAINED....cecsturtrssressresssresssresssresssssssersssesssressssessssessssessessssesssessssesssssssssssssssssssssssssssessssesssssssssesses
F. DECODER BLOCK w.vuvevvrrerrerensesesseeaes
G. ARITHMETIC LoGIC UNIT BLOCK
H. C++ CODE FOR GENERATING .MIF FILES...ccssertresrerssrerssresseresssressssessesessersssessssessssessssesssssssssssssssssssssesssssssssesssseanes
I. 1 CYCLE MULTIPLIER BLOCK
J. REGISTER MULTIPLEXER ....oessssstussssssssnessssssssssssssesssssssssssssssssssssnssssssssssssssessssssssssssssessssssnessssasnessssssnessssasesssssnnnns
K. TIMEQUEST TIMING ANALYSER w..cutttrutresressessessesesssssssssessessessessessessesssssssssssssssessssssssessessssssssssssssssssssssssssssssssssnsans
L. TEST WAVEFORMS.....curtitreuseressessssessssessssessssssssssssssssssssssessssessssessssesssssssssssssssssesssssssssssssessssssssssssssssssssssssssssssssssssssanes

L.1. Calculate Fibonacci NUMDETS USING FECUISION w.ceureeueereeesmeeesseessseeessseessssessssessssssssssssesssssesssssesssesssssssssessssesess

L.2. Calculate pseudo-random integers with a linear congruential generator (LCG)
L.3. Traverse a linked list t0 find @n iteIM ... —————

M. RESOURCE UTILISATION REPORT ...ccturtusseusssessessssessssessssessssessssssssssasssssssssssesssssssssssssssssssssssssssssssssssssssssssnssssassssanes

Page 3 of 59



1. Introduction

A Central Processing Unit (CPU) is at the backbone of electronic engineering and computing. State
of the art CPUs are capable of performing many different operations at very high speeds. There
are many different CPU implementations, ranging from basic to very specialised, but the most
commonly used CPUs are found in desktop computers and mobiles phones. We chose a project
through which we would design our own CPU, since this involves both creativity, to ensure a wide
range of capabilities, as well as technical and analytical skills, to ensure correctness and efficiency.
Furthermore, we thought this project would give us some insight into how a modern computer

works.

The project aim was to build a CPU capable of performing a wide range of operations, such as
arithmetic, logic and memory operations. The final design was based on several modern CPU

architectures and mathematical algorithms to ensure correctness and maximise efficiency.

This report describes our project. The report starts with a detailed set of requirements for the
final CPU. The next two sections describe planning, teamwork and project progression. Finally,
the last three sections describe the final design, alongside a critical analysis and a reflection on

the overall project.

Page 4 of 59



2. Problem definition

2.1. Project outline

The following section describes the project outline - technical problem definition, team

members, project length and some constraints and requirements.

Project title: Design of a general-purpose CPU

Project description: The main goal of this project is to build a general-purpose CPU, capable of
performing a wide range of operations including arithmetic operations such as addition,
subtraction and multiplication; logic operations such as bitwise operations and conditionals;
memory operations such as load and store. The CPU should be tested with a wide range of
mathematical functions and programming algorithms, including but not limited to calculating a
Fibonacci number, generating pseudo-random numbers, and traversing a linked list. The CPU is
expected to complete these operations efficiently and correctly, using only built-in hardware and

instructions.

Team members: Aadi Desai, Benjamin Ramhorst and Kacper Neumann.

Project length: Five weeks, starting from 11thMay with a submission deadline set for 14t June.

Project budget: No set budget.

Technologies used: The CPU should be designed and tested using simulation tools and
hardware-design languages. The required software for this project is Quartus Prime. For testing,
programming languages such as C++ or bash can be used to automate specific tasks. There are no
set requirements for communication services, but it is highly recommended to use some form of
version control, preferably GitHub, for sharing project files. It is not required to build the final

circuit; project files will suffice.

Page 5 of 59



Technical requirements and constraints:

*  The instruction length must be 16 bits, but the minimum number of instructions is not
set.

»  Efficient multiplication must be built-into the CPU.

» The CPU must have enough memory to store 2K words of data and 2K words of
instructions, each word being 16 bits long.

= The CPU must have a stack, but there are no other hardware requirements.

»  The CPU should minimise power consumption.

» The CPU should have a low geometric mean time of executing the given testbench tasks.

Verification: The CPU should be tested with three algorithms, as described below. It must
produce correct results, but also be efficient, both in terms of power and speed. The algorithms

used for testing should be:

1. Calculating the nthFibonacci number using recursion.
2. Calculating pseudo-random integers.

3. Traversing a linked list of integers and searching for a specific element in the list.

The source code for these algorithms can be found in Appendix A.

2.2. Project specification

The following section describes the project specification, which was used to verify the final
design. The specification used for this project was based on the Software Requirements
Specification (SRS). We decided to use SRS, rather than Product Design Specification (PDS) since
the project will be completed using simulation tools. Some features from a PDS, such as shipping,
packing, and manufacturing facilities do not apply to this project. Furthermore, a PDS is more
useful when the project is built using physical components since the PDS document includes
features such as weight, materials, and shelf storage. Finally, a PDS includes features such as legal,
political, and social implications, which would require significant market research. The main
drawback of SRS is the lack of user interface requirements for this project. Based on the initial
project specification and the project outline, the following functional and non-functional

requirements were set for this project:

Page 6 of 59



Functional requirements:

e The CPU must have a 16-bit instruction length.
e The CPU must have enough memory to store 2K, 16-bit words of data and instructions,
each.
e The CPU must be able to perform the following arithmetic instructions:
o Addition
o Multiplication
e The CPU must be able to perform frequent comparisons, such as equal, greater than (or
equal) and less than (or equal).

e The CPU must have a stack.

Non-functional requirements:

e No instruction should take longer than three cycles.
e The CPU must be pipelined to improve performance.
e The maximum clock frequency should be at least 100 MHz at 0 degrees Celsius.

e The CPU dynamic power consumption should not be above 50 mW.

Page 7 of 59



3. Project planning and management

3.1. Project aims and milestones

Based on the project specification, the following aims were set. These aims were later used to

verify the final project and the overall functionality and performance of the CPU.

1.

Design a CPU capable of performing a wide range of basic instructions (arithmetic, logic,
jumps, load/store), with a 16-bit instruction length and enough memory for 2K of
instructions and data each. Avoid creating very specialised instructions, such as an
instruction for calculating a Fibonacci number or a pseudo-random number, unless
necessary.

The CPU should be able to perform both arithmetic instructions (addition, subtraction,
and multiplication) as well as bitwise logical operations, such as AND, OR, NOT, XOR etc.
Division and modular arithmetic are not required, but an efficient implementation of
multiplication is. Multiplication must not be implemented using the multiply
megafunctions or the Verilog multiply operator.

The CPU must have at least four registers to enable work with more data concurrently.
Preferably eight, if instruction length allows.

The instruction set architecture (ISA) should support a wide range of jumps, due to many
different conditionals used in modern programming languages.

Implement a last-in-first-out (LIFO) buffer to be used as a stack. This can be done using
Verilog or block diagrams.

Make the CPU as power-efficient as possible, mainly through minimising the number of
components.

Pipeline the CPU to make it more efficient.

Optional: Create a program for generating .mif files from instructions. This will make
converting instructions to hexadecimal easier and speed up testing.

Optional: Create a program for simulating the CPU based on the instructions. This is
unlikely to be completed, as it requires quite a bit of work and is not necessary as most

instructions can be tested quite quickly by hand simulation.

From the above aims, a list of milestones was created to make sure we were on the right track

and completed the project on time:

1.
2.
3.

Create the basic project and enable collaboration through GitHub.
Design a suitable instruction set with corresponding opcodes and meanings.

Design a basic CPU with a control and data path and multiple registers.

Page 8 of 59



4. Implement an arithmetic-logic unit (ALU) with the functionality described above. The
ALU should be able to perform both logic and arithmetic, but not multiplication.
Multiplication needs to be implemented separately.

Implement a multiplier and test it independently from the rest of the CPU.

Implement a stack.

Test with the required tests (Fibonacci, number generator and linked list).

® N o U

Pipeline the CPU and complete the project.
3.2. Team roles

In the following section, the role of each team member is described, alongside some overall team
responsibilities. The team consists of three first-year Electrical and Electronic Engineering
students: Aadi Desai, Benjamin Ramhorst and Kacper Neumann. This role split was done based
on the project requirements as well as individual skills, such as Verilog coding, git usage, report

writing etc. Some of these changed as the project progressed.

Aadi Desai (Belbin roles - Implementer and Monitor evaluator): Aadi has a good understanding
of Verilog, so he worked on the ALU and the stack. These blocks were implemented in Verilog to
avoid large block schematics which are hard to debug. Furthermore, Aadi was responsible for
setting up and maintaining collaboration and version control of project files via GitHub, as well

as organising and updating the instruction set.

Benjamin Ramhorst (Belbin roles - Implementer and Completer finisher): Benjamin
implemented the multiplier circuits and worked on C++ programs to simplify testing. He also
acted as the overall report editor, keeping detailed track of sources used and the project

progression.

Kacper Neumann (Belbin roles - Implementer and Completer finisher): Kacper implemented
the overall CPU, having designed the decoder and the data and control path. Kacper also acted as
the overall project manager, keeping detailed track of meeting schedules, pending tasks and

current progress.

Every team member also researched different CPU architectures and possible implementations
of a multiplier and a stack during the early stages of the project. The final instruction set was
agreed on collectively after researching different ISAs. Finally, every team member was required

to work on sections of this project report for parts they implemented.

Page 9 of 59



3.3. Communication

For communication and file sharing, we used a wide range of tools and services, as outlined

below:

WhatsApp - Used for planning meetings and asking questions. Also used for posting
updates that do not require immediate phone calls or large files.

Microsoft Teams - Used for scheduling meetings and sharing files to be edited collectively.
This service also supports drawing and resource sharing in real-time, which was used
while creating the instruction or the CPU design.

OneDrive - Used for sharing larger files and backup.

GitHub - Used for sharing technical files, such as block schematics or C++ and Verilog

code.

3.4. Planning

Based on the previously mentioned requirements and team roles, the project was broken down

into stages, each of which is described below. The project started on 11th May and needed to be

submitted by 14t June. Detailed meeting structures and project progression can be seen in the

following section.

1.

Initial research and project setup (to be completed by 19th May):

» Two meetings were allocated for this stage, which occurred on 12th May and 16th May.

»  Understand the specification and make an initial plan.

» Start a new Quartus project and enable collaboration though GitHub, OneDrive and
Microsoft Teams.

»  Research modern CPU architectures, their advantages and drawbacks.

Conceptual designs (to be completed by 22nd May):

* One meeting was allocated for this stage, which took place on 20t May.

» Decide on the instruction set and CPU capabilities.

» Design a basic CPU, consisting of a control and data path, multiple registers and an
ALU. No work in Quartus is required during this stage.

= Research possible implementations of multipliers and stacks.

Design of individual parts (to be completed by 2nd June):

» Three meetings were allocated for this stage, which occurred on 24t May, 26th May
and 31st May.

= Implement the control and data paths in Quartus.

*» Implement the ALU using Verilog.

* Implement and test the multiplier.

Page 10 of 59



Implement a stack, either with Verilog or block schematics.
Write programs for converting assembly code into hexadecimal instructions.

Write documentation for individual parts - to be used in the final report.

Initial testing and integration of various parts (to be completed by 6t June):

One meeting was allocated for this stage, which took place on 4t June.

Start writing a draft of the report.

Integrate the various parts (ALU, multiplier, stack) with the overall CPU.

Start basic testing by checking individual instructions. Testing the three algorithms
outlined by the specification is not required during this stage. However, the three

source codes (provided in Appendix A) need to be translated to assembly code.

Testing and optimisation (to be completed by 12th June):

Five meetings were allocated for this stage, which occurred on 8t June, 9th June, 10th
June, 11t June and 12t June.

Fix any bugs and incorrect instructions.

Pipeline the CPU.

Test with the required algorithms.

Remove any unnecessary components and reduce power consumption.

Finish writing a draft of the report.

Submission (to be completed by 14t June):

Two meetings were set for this stage, which occurred on 13t June and 14t June.
Fix any remaining bugs.

Complete the final report and create a video showcasing the CPU.

This plan can be summarised with the following table (Fig. 3.4a), which can further be used to

develop a Gantt chart, as shown in Fig. 3.4b. The table shows each activity, alongside the stage

during which the activity occurs and how long each stage should last, as set out in the plan.

Stage Description Start date End date Stage duration (days)
1 Setup Quartus and create a GitHub repostiory Monday, 11 May 2020 Tuesday, 19 May 2020 8
1 Research modern CPU architectures Monday, 11 May 2020 Tuesday, 19 May 2020 B8
2 Decide on an instruction set and hardware capabilities Tuesday, 19 May 2020 Friday, 22 May 2020 3
3 Impl t control path Friday, 22 May 2020 Tuesday, 2 June 2020 11
3 Impl data path Friday, 22 May 2020 Tuesday, 2 June 2020 11
3 Implement an ALU Friday, 22 May 2020 Tuesday, 2 June 2020 11
3 Impl t amultiplier Friday, 22 May 2020 Tuesday, 2 June 2020 11
3 Implement a stack Friday, 22 May 2020 Tuesday, 2 June 2020 11
3 Write software for converting assembly to hexadecimal Friday, 22 May 2020 Tuesday, 2 June 2020 11
4 Integration of various parts and initial testing Tuesday, 2 June 2020 Saturday, 6 June 2020 4
5 Fix any remaining bugs Saturday, 6 June 2020 Monday, 8 June 2020 2
5 Pipeline the CPU Monday, 8 June 2020 Wednesday, 10 June 2020 2
5 Test with required algorithms and verification Wednesday, 10 June 2020 Friday, 12 June 2020 2

5and Report writing Tuesday, 2 June 2020 Sunday, 14 June 2020 12
6 Final review and submission Friday, 12 June 2020 Sunday, 14 June 2020 2

Fig. 3.4a: Task summary

Page 11 of 59



Setup Quartus and create a GitHub

R

arsday, 21 May 2020

esearch modern CPU architecturas

Decide on an instruction set and hardware capabilities I

Tuesday, 26 May 2020 Sunday, 31 May 2020 Friday, 5 June 2020

Fig. 3.4b: Gantt chart

Wednesday, 10 June 2020

Activity networks are another useful way of visualising project plans. The table shown in Fig. 3.4a

was adjusted to include task dependencies and the expected duration of each task, rather than

overall stage duration. Furthermore, the table includes the earliest day a task can start, based on

previous tasks, as well as the latest day a task can be completed, as defined in the project plan.

The adjusted table can be seen in Fig. 3.4c and the activity network is shown in Fig. 3.4d. The

network consists of connected boxes; each box represents a single task. The values within each

box are the earliest start day, expected duration and latest end day, from left to right.

Task Description Earliest startday| Latestend day | Expected duration | Depends on
A Setup Quartus and create a GitHub repostiory 0 8 2
B Research modern CPU architectures 0 8 6
C Decide on an instruction set and hardware capabilities 6 11 3 B
D Implement control path 9 22 4 A B,C
E Implement data path 9 22 4 A B,C
F Implement an ALU 9 22 4 A C
G Implement a multiplier 6 22 4 AB
H Implement a stack 2 22 3 A
[ Write software for converting assembly to hexadecimal 9 22 3 C
] Integration of various parts and initial testing 13 26 4 D,E,F,G,H,I
K Fixing any remaining bugs 17 28 2 ]
L Pipeline the CPU 19 30 2 K
M Test with required algorithms and verification 21 32 2 L
N Report writing 0 34 10
0 Final review and submission 23 34 2 M,N

Fig. 3.4.c: Activity network table

Page 12 of 59




Start

22

L

Fig. 3.4.d: Activity network

This network is useful for visualising dependencies between various parts of the project.
However, the earliest start dates can be misleading: some tasks such as tasks D through I need to
be implemented concurrently, which would increase the duration of each task. Therefore, while

unlikely, it is possible to start initial testing and overall CPU integration (activity J) by the 13t
day.

Page 13 of 59




4. Project timeline

The following section describes the project progression, including meeting descriptions, tasks

assigned to each team member, progress and any problems encountered along the way.

First meeting (12t May):

Understand the specification, discuss future meetings, deadlines and team roles.

We agreed on collaboration methods (described in the previous section), but GitHub was
still not set up.

The main goal before the next meeting was to research different ISAs and possible
implementations of a multiplier.

Every team member needed to set up Quartus by the next meeting.

Next meeting was set for 16th May at 2 pm BST.

Second meeting (16t May):

GitHub was still not set up due to issues with collaboration using Quartus; this needed to
be completed as soon as possible.
We decided to use separate memory units for instructions and data, based on the Harvard
architecture, as it would make debugging easier and reduce power consumption.
A possible implementation of multiplication was found - an array multiplier, built using
partial products which are shifted and added. This was an acceptable approach at the time
but was later replaced with a more elegant design (for details see subsection 5.10.
‘Multiplier’).
Before the next meeting, each of the team members needed to read about the following
topics:
o Benjamin - AVR architecture, research implementations of a multiplication.
o Aadi - SPARC and MIPS instruction set architecture, collaboration with Quartus
files through GitHub.
o Kacper - ARM architecture, pseudo-random number generator, brainstorm the
initial design of the CPU.
Next meeting was set for 20th May at 5 pm BST.

Page 14 of 59



Third meeting (20t May):

e Aadi created a GitHub repository and added Benjamin and Kacper to it.

e Belbin roles needed to be completed by 20th May.

e The instruction set was finalised (see subsection 5.2. ‘Instruction set’):

o To allow working with more data, as described in project aims, eight registers

would be used in the final CPU.

o Two separate memory units would be used, as discussed in the previous meeting.

o For non-memory instructions:

MSB is always 0, to distinguish from memory operations.

The following 6 bits determine the opcode of the given instruction.

The last 9 bits determine the three registers required for that instruction
- 3 bits for each of the registers, those being the destination register and
two source registers.

Note: this was later amended to include an indirect load and store

instruction (see subsection 5.2. ‘Load/store operations’).

o For memory instructions:

MSB is always 1, to distinguish from non-memory operations.

The next bit is used to distinguish between load and store, the only two
possible instructions in this category.

The next 3 bits determine the register from which data is read or to which
data is written

The next 11 bits are used for determining the memory location needed for

this operation.

e Tasks to be completed before the next meeting:

o Benjamin - further investigate possible implementations of multiplication

circuits.

o Aadi - document the instruction set with a description of each instruction and

their opcodes.

o Kacper - design the initial CPU.

e Next meeting was set for 24th May at 3 pm BST.

Page 15 of 59



Fourth Meeting (24t May):

e Kacper finalised the initial CPU design.
e The instruction set was completed with preliminary documentation available in a
Freehand diagram (included in Appendix B).
e Tasks to be completed before the next meeting:
o Benjamin - implement and test the multiplier circuit.
o Aadi - finish documenting the ISA and start working on the ALU.
o Kacper - translate the initial design from the diagram into Quartus and ensure the
control path works without the ALU and multiplier.

e Next meeting was set for 26th May at 3 pm BST.
Fifth meeting (26t May):

e Benjamin read about the multiplier: a possible implementation was through the use of
lookup tables.
e Aadi implemented the ALU; however, it still needed to be integrated with the multiplier
block.
e Initial CPU was almost implemented; the control path still needed some work.
e Tasks to be completed before the next meeting:
o Benjamin - finish implementing the multiplier circuit, investigate possible
implementations of a stack.
o Aadi - finish the ALU, investigate possible implementations of a stack.
o Kacper - finish implementing the control path, investigate possible
implementations of a stack.

e Next meeting was set for 31st May at 4:30 pm BST.
Sixth Meeting (31st May):

e Multiplier was implemented.
e Started thinking about improving efficiency, mainly through pipelining.
e With the current instruction set, linked list traversal would take five cycles per item,
provided the CPU is pipelined. We needed to investigate possible alternatives.
e Tasks to be completed before the next meeting:
o Kacper - adjust the state machine to account for instructions that take three
cycles, incorporate the ALU with the rest of the CPU, write a draft report for the

decoder, state machine and the overall CPU.

Page 16 of 59



o Aadi - cooperate with Benjamin to finish the ALU and integrate it with the
multiplier block, write a draft report of the ALU and start working on the stack.
o Benjamin - cooperate with Aadi to finish ALU and integrate it with the multiplier
block and write a draft report of the multiplier.
o Everyone - brainstorm ideas for optimising the linked list.
Started writing a draft version of the report.

Next meeting was set for 4th June at 4:30 pm BST.

Seventh Meeting (4" June):

The stack still needed to be implemented, implementations using Verilog were
considered.
Multiply block and ALU were completed and integrated but not tested.
Benjamin created an assembly to MIF generator, written in C++.
Tasks to be completed before the next meeting:
o Benjamin - edit the report, translate pseudo-random generator source code into
assembly code, figure out the shortest clock period of the design.
o Kacper - edit the report, translate the linked list and Fibonacci source code into
assembly, modify the decoder to integrate stack operations.
o Aadi - implement and document the stack, start analysis for component power
consumption.

Next meeting was set for 7th June at 4:30 pm BST.

Eighth meeting (8t June):

Kacper started testing the CPU. Multiplication did not work when integrated with the rest
of the CPU, but it worked as a separate block.
Benjamin completed the following parts of the draft: project management and
progression.
Aadi implemented the stack.
Tasks to be completed before the next meeting:
o Kacper - finish technical documentation and send it to Benjamin by June 8th,
debug and test the rest of the CPU instructions, excluding multiplication.
o Benjamin - finalise the draft, send it to Mrs Perea, and work on fixing the ALU-
multiplier integration bugs.
o Aadi - document the stack, debug the other instructions and work on fixing the
ALU-multiplier integration bugs.

Next meetings were set for 9th June at 4:30 pm BST and 10th June at 4 pm BST.

Page 17 of 59



Ninth Meeting (9! June):

e Aadi was still trying to fix the multiplier block.
e Kacper tested the rest of the CPU. All the instructions were functional, except for
multiplier commands.
e Tasks to be completed before the next meeting:
o Kacper - document the ISA, apply fixes to the test code.
o Benjamin - ensure the ALU and multiplier are fully functional.
o Aadi - ensure the ALU and multiplier are fully functional.

e Next meeting was set for 10t June at 4 pm BST.
Tenth Meeting (10t June):

e Aadi managed to test the CPU, including the multiplier. Everything worked.

e The next stage was pipelining the CPU to increase speed.

e Benjamin started translating the C++ test codes into instructions executable by the CPU.

e The team started brainstorming ideas for the video and how to structure it.

e Indirect addressing was added as it is needed for traversing a linked list. This error was
not spotted earlier, but the ISA is versatile and there were lots of opcodes left, so having
to add a new instruction was not a significant setback.

e Tasks to be completed before the next meeting:

o Kacper - pipeline the CPU and document it.
o Ben - finish translating the C++ code into assembly code.
o Aadi - plan out the video.

e Next meeting was set for 11t June at 4 pm BST.
Eleventh Meeting (11t June):

e Kacper pipelined and almost completed the CPU.
e Ben finished translating the C++ code into instructions executable by the CPU.
e Tasks to be completed before the next meeting:

o Kacper - test the CPU with the translated C++ tests.

o Benjamin- write the report introduction.

o Aadi - test the CPU with the translated C++ tests.

e Next meeting was set for 12t June at 4 pm BST.

Page 18 of 59



Twelfth and Last Meeting (12t June):

e Kacper added a JMA instruction for immediate jumps to a given address. This eliminated
the need to use a load operation before a jump but is limited to addresses up to 0x1FF.

e Kacper added the CLL and RTN instructions to ease the implementation of the Fibonacci
test code.

e Tasks to be completed before the next meeting:

o Benjamin - test the pipelined CPU with the random number generator algorithm,
work on translating the Fibonacci code and write an introduction and conclusion,
perform final edits of the report.

o Kacper - test the pipelined CPU with the linked list code, work on translating the
Fibonacci code, plan, record and upload the video.

o Aadi - finish analysing the CPU performance and work on the Appendix, perform
final edits of the report.

e Submission and final edits were coordinated informally and not documented.

Page 19 of 59



5. Design process

5.1. Overview of the CPU

The final design was based on multiple architectures. After researching ARM, MIPS, SPARC and

AVR, we chose to include the following in our design:

e (General features of a RISC machine.

e An ARMvS8 load/store architecture and some instructions from this architecture such as
multiply and add/subtract (MLA/MLS), no operation (NOP) and various shifts (ROR and
RRC) [1].

e Splitting instructions into different formats, like the MIPS architecture [2]; for our design,
this meant splitting instructions into two categories, memory and non-memory

operations (see subsection 5.2. ‘Instruction set’).

The main goal of this approach was to make each instruction take as few cycles as possible, ideally
just one, while avoiding any specific instructions, such as an instruction for calculating the nth
Fibonacci number. The diagram in Fig 5.1 shows a block diagram of the CPU. Signals such as the
input clock and control lines are omitted from this diagram to make it simpler. The data path is
shown in blue and the control path is purple. Green blocks represent memory units/registers,
while grey ones are asynchronous logic (except the multiplier located inside the ALU). The CPU
consists of the following components which are described in the following subsections (for

detailed block diagrams and Verilog code, see Appendix C):

e State Machine e Arithmetic Logic Unit (ALU)

e Decoder block o General ALU

e Instruction memory unit o Multiplier

e Data memory unit e Last-in First-out (LIFO) stack buffer

e Register file Multiplexers

e Add 1 logicblock

Page 20 of 59



Address

Instruction
A Decoder
> +1 PC »
RO/PC AR

> R1 - Sfoacain

ﬁ Address
>L_R2_I7 Data

RAM
> R3 | R h -, > urostack
> R4 |- l,
9 RS < 9 Stack Data Opcode
,). R6 b= MUX ALU Address Out e
_P Rdﬁ Data Out q

>| R7 /

5.2. Instruction set

Fig. 5.1: Simplified CPU block diagram

5.2.1. Overview and initial ideas

One of the most crucial early-stage design decisions was the creation of an instruction set
architecture (ISA) which the CPU’s implementation would be based on. Upon researching
different ISAs, the decision was made to proceed with an ISA similar to ARMv8 [1] which would
have two types of encoding for instructions - load/store encoding and three operand instruction
encoding. This general format (like many other RISC architectures) was chosen as it fits the

functional requirement of 16-bit long instruction words and provided space for up to 8 registers

in the CPU.

Generally, all instructions can be classified into one of these categories:

e Load/store operations

e Arithmetic

e Logical
e Shifts
e Jumps

e Stack manipulators

e Others




The CPU can accommodate up to 64 different commands due to the size of the opcode field and
therefore can be expanded by adding new instructions and hardware when the current design
does not meet a specific need or if a high degree of specialisation is required for a given
implementation. For instructions other than the memory load/store operations, the encoding can

be summarised in terms of bits as:

15 14 | 13 I 12 | 11 | 10 I 9 8 | 7 | 6 5 | 4 | 3 2 | 1 | 0
1 Opcod Rd: destination Rs1: source Rs2: source
peode register register 1 register 2

5.2.2. Load/store operations

These instructions are used to manipulate the data RAM to retrieve values or save new values
into it from one of the CPU’s registers. The LDA and STA instructions require 11 bits in the
instruction word for the memory address and due to this need, their format is different from all
other instructions in the ISA. The most significant bit (MSB) of the instruction word is 1 which
distinguishes them from all other commands. The other two available commands follow the

standard pattern and start with 0. The instructions available in this category are:

e LDA (load direct address): load Rx with the value found at the specified memory address
in the data RAM (Rx = Mem[Memory Address])

e STA (store direct address): store the value of Rx at the specified memory address in the
data RAM (Mem[Memory Address] = Rx)

e LDR (load indirect address): load Rd with the value found at the memory address
specified by Rs1 in the data RAM (Rd = Mem|[Rs1])

e STR (store indirect address): store the value of Rs1 at the memory address specified by

Rd in the data RAM (Mem[Rd] = Rs1)

The encoding of these instructions is summarised below. Rx represents the register on which the
load/store operation is performed in the case of LDA and STA. In the case of LDR and STR, Rd is
the register to which the value will be read from/stored to (respectively) and Rs1 is the register

which contains the memory address.

. Bits of Instruction Word
Instruction
15 14 13|12|11 10|9|8|7|6|5|4|3|2|1|0
LDA 0
1 Rx Memory Address
STA 1
LDR 110
O|1]1]0]1]0 Rd Rs1 Unused
STR 1|1

Page 22 of 59



5.2.3. Arithmetic operations

The CPU’s Arithmetic Logic Unit (ALU) can perform basic arithmetic operations on 16-bit
numbers like addition, subtraction and multiplication (division was not implemented due to
complex high hardware requirements). The implementation of the MLA command was essential
since it combines two operations into one command which shortens the operation A = A*B+C
from taking 3 clock cycles (multiply then add) to just 2. This instruction was included in the ISA
as this specific operation was required to complete the Linear Congruential Generator C++ code
test (see subsection 2.2. ‘Project outline’ and Appendix A). The ADC and SBC operations (with
carry) were implemented as additional operations to account for the use of 32-bit integers by the

user if desired, even though this is strongly discouraged. The available operations are:

e ADD (add): Rd =Rs1 + Rs2

e ADC (add with carry): Rd = Rs1 + Rs2 + CARRY

e ADO (add1):Rd=Rsl+1

e SUB (subtract): Rd = Rs1 - Rs2

e SBC (subtract with carry): Rd = Rs1 - Rs2 + CARRY -1
e SBO (subtract1):Rd=Rs1-1

e MUL (multiply): Rd = Rs1 * Rs2

e MLA (multiply and add): Rd = (Rd * Rs1) + Rs2

e MLS (multiply and subtract): Rd = Rs2 - (Rd * Rs1)

The format of each of these instructions is summarised in the following table. Rd represents the

destination register while Rs1 and Rs2 represent the source registers 1 and 2, respectively.

. Bits of Instruction Word
Instruction
15 14 13 12 11 1098|7|6 5|4|3 2|1|O

ADD 0|0

Rs2
ADC oOo|1|0]1]0]1
ADO 110 Unused
SUB 0|0

Rs2
SBC ojo0of(1(1]0]0]1 Rd Rs1
SBO 110 Unused
MUL 0|0
MLA oOo|11]1]0]1 Rs2
MLS 110

Page 23 of 59



5.2.4. Logical operations

The CPU is also capable of performing some basic logical operations. Although these are not
needed to execute the specified tasks outlined in the three test codes (see subsection 2.1. ‘Project
outline’ and Appendix A), they are included in the ISA for the sake of completeness and versatility.

The operations that fall under this category are:

e AND:Rd =Rs1 AND Rs2

e OR:Rd=Rs1ORRs2

e XOR:Rd =Rs1 XOR Rs2

e NOT:Rd=NOT Rs1

e NAND (NND): Rd = NOT (Rs1 AND Rs2)
e NOR:Rd =NOT (Rs1 OR Rs2)

e XNOR (XNR): Rd = NOT (Rs1 XOR Rs2)

The format of each of these instructions is summarised in the following table. Rd represents the

destination register while Rs1 and Rs2 represent the source registers 1 and 2, respectively.

. Bits of Instruction Word
Instruction
15 14 13 12 11 1098|7|6 5|4|3 2|1|0
AND 0|0
OR 0|1 Rs2
o0 |11
XOR 110
NOT 0 111 Rd Rs1 Unused
NND 0|0
NOR 0O(1(0]0]0]1 Rs2
XNR 111

5.2.5. Shift operations

The ALU can perform asynchronous shifts by a specified number of places. These are not directly
required for any of the testbench codes (see subsection 2.1. ‘Project outline’ and Appendix A), but
they provide a useful addition to the CPU. Shifts can be used to perform quick multiplication and
division by powers of 2. For a detailed description of the functionality of the ASR, ROR, and RRC

instructions, see Appendix D. The available operations in this category are:

e LSL (logical shift left): Rd = Rs1 shifted left by Rs2 number of places
e LSR (logical shift right): Rd = Rs1 shifted right by Rs2 number of places without copying

the most significant bit

Page 24 of 59



e ASR (arithmetic shift right): Rd = Rs1 shifted right by Rs2 number of places with the
sign of Rs1 preserved through sign extension (shifting in the most significant bit of Rs1
for every shift)

¢ ROR (shift right loop): Rd = Rs1 shifted right by Rs2 number of places with the value
shifted in being the least significant bit of Rs1 with every shift

o [DEPRECATED] RRC (shift right loop with carry): Rd = Rs1 shifted right by Rs2 number
of places with the value of the carry flip-flop of the ALU shifted in and the least significant
bit of Rs1 saved into the carry flip-flop with every shift

The RRC instruction was removed after a timing and resource analysis of the CPU (see section 6.
‘Final analysis of design’). The format of each of these instructions is summarised in the following
table. Rd represents the destination register while Rs1 and Rs2 represent the source registers 1

and 2, respectively.

. Bits of Instruction Word
Instruction
15 14 13 12 11 1098|7|6 5|4—|3 2|1|0
LSL 010
LSR 1/0/10]0]0]1
ASR 0 110 Rd Rs1 Rs2
ROR 010
110|101
RRC 01

5.2.6. Jump operations

The jump operations allow the user to directly manipulate the value of the program counter (PC)
to skip certain instructions or create conditional loops. Both conditional jumps and an
unconditional jump are implemented to allow a high degree of flexibility. The conditional jumps
also provide comparisons of two numbers. JMA was added as an alternative to JMP, without
needing a load operation beforehand; however, it is important to mention that JMA cannot reach

all addresses in the instruction RAM. The available jump instructions are:

¢ JMP (unconditional jump): unconditional jump to instruction with address Rd

e JMA (unconditional jump to address): jump to instruction at the address specified
(note: maximum address available is 0x1FF due to the size of the Jump Address’ field)

¢ JC1 (conditional jump 1): jump to instruction with address Rd if Rs1 < Rs2

e JC2 (conditional jump 2): jump to instruction with address Rd if Rs1 > Rs2

¢ JC3 (conditional jump 3): jump to instruction with address Rd if Rs1 = Rs2

¢ ]JC4 (conditional jump 4): jump to instruction with index Rd if Rs1 = 0

Page 25 of 59



e JC5 (conditional jump 5): jump to instruction with index Rd if Rs1 = Rs2
e JC6 (conditional jump 6): jump to instruction with index Rd if Rs1 < Rs2
e JC7 (conditional jump 7): jump to instruction with index Rd if Rs1 # Rs2

e JC8 (conditional jump 8): jump to instruction with index Rd if Rs1 < 0

The format of each of these instructions is summarised in the following table. Rd represents the
destination register (in this case, the destination of the jump) while Rs1 and Rs2 represent the

source registers 1 and 2, respectively.

. Bits of Instruction Word
Instruction
15 14 13 12 11 1098|7|6 5|4|3|2|1|0

JMP ojojo0o|0|0]O0]O Rd Unused

JMA 0|1 Jump Address

JC1 010

jC2 0|1 Rs2
0O(0]|0]1

JC3 110

]C4 1|1 Unused

Rd Rs1

JC5 010

(03] 0|1 Rs2
O(0|1]0

JC7 110

]C8 1)1 Unused

5.2.7. Stack operations

These operations manipulate the stack, either by saving (pushing) a new value to it from a
specified register or by retrieving (popping) the latest value pushed onto the stack and saving it
in a specified register. These simple operations allow for primitive subroutines to be constructed
in assembly language (CLL and RTN commands can also be used; for details see subsection 5.2.8.
‘Other operations’); however, they require the user to think more intensively about their layout
in comparison to the simple-to-use BX and BL instructions of the ARMv8 architecture. The stack
is a last-in-first-out buffer, meaning that the value available for retrieval is the latest pushed to it.
For a detailed description of the stack’s operation and the reasoning behind its implementation,

refer to subsection 5.11. ‘Stack’. The operations in this category are:

e PSH (push): push the value of a register (Rs1) onto the stack

e POP (pop): save the latest value pushed onto the stack in a register (Rd)

Page 26 of 59



The format of these instructions is summarised in the following table. Rd represents the
destination register while Rs1 represents the source register 1. These instructions only take one
register operand each. Their register fields are different to make it clear what functionality they

perform (PSH requires a source, POP requires a destination).

. Bits of Instruction Word
Instruction
15 14 13 12 11 1098|7|6 5|4—|3 2|1|0
PSH 010 Unused Rs1
0 110 1 0 Unused
POP 0|1 Rd Unused

5.2.8. Other operations

The operations in this category cannot be classified into any of the categories mentioned
previously. Nevertheless, their importance in the correct and efficient operation of the CPU is
crucial. The CLL and RTN instructions were added to allow the user to easily create basic
subroutines and nested functions in assembly language (for a detailed description of their

operation see Appendix E). The operations in this category include:

e MOV (move): Rd =Rs1

e CLL (make call): save the PC’s value to the stack and jump to the instruction at the
memory address specified in Rd

e RTN (return from call): load the latest value from the stack to the PC and jump to the
instruction at the memory address of that value

e NOP (no operation): do nothing for a clock cycle/wait

e STP (stop): halts all CPU operations, clears the stack, and signifies the end of the list of

instructions/program

The format of these instructions is summarised in the following table. Rd represents the

destination register while Rs1 represents the source register 1.

. Bits of Instruction Word
Instruction
15 14 13 12 11 1098|7|6 5|4|3 2|1|O

MOV o|1|0]0]|1]1 Rd Rs1 Unused

CLL 110 Rd Unused
1101110

RTN 0 111

NOP 110 Unused
11111

STP 111

Page 27 of 59



5.3. State machine

A crucial element of any CPU is the state machine. This design includes a simple state machine

with three possible states:

e FETCH (001) - the cycle during which the instruction memory is read and the instruction

that needs to be executed appears at its output.

e EXEC1 (010) - the execution cycle during which all necessary operations are performed,

as specified by the current instruction.

e EXEC2 (100) - an optional third cycle needed for the execution of some instructions, such

as multiplication and load instructions.

The following Moore state diagram shows the transition between the three states, dependent on

the inputs, RST and E2. The input RST resets the state machine to FETCH. The input signal E2

determines whether a third cycle is needed, depending on the current instruction. The 000 state

(not shown) that occurs during the initialisation of the state machine leads directly to the FETCH

state on the next rising edge of the clock without considering any of the inputs.

E2, RST input signals
(in that order)

- X1

V4
FETCH/001 X0 EXEC1/010 } 104{ EXEC2/100

State name EXEC2, EXEC1, FETCH output signals

( (in that order)

[

oX

XX

11

Fig. 5.3.a: Basic state machine diagram

Pipelining is a simple way of optimising digital circuits. This means that the CPU would stay in the

EXEC1 cycle all the time, unless an instruction required an extra cycle to complete, in which case

the EXEC2 cycle would occur. The following changes were made to the state machine to achieve

pipelining:

e The internal state numbers were changed to the ones shown in brackets:

o FETCH (00) - initial state; it serves the same function as previously but needed to

be kept in for the very first cycle after initialising the CPU, i.e. the first command

still needs to be fetched.

o EXEC1 (01) - same function as previously.

o EXEC2 (10) - same function as previously.

Page 28 of 59



The new Moore state diagram of the pipelined state machine is shown below.

E2, RST input signals
(in that order)

State name

\ (|n that order)
FETCH/001 [’[ EXEC1/010 ]‘ 4’[ EXEC2/100

*

EXEC2, EXEC1, FETCH output signals

X1

Fig. 5.3.b: Pipelined state machine diagram

5.4. Instruction memory unit

The design includes a 16-bit word length RAM unit that can hold up to 2048 memory words, as
required by the specification. This RAM unit only holds the instructions. A separate RAM unit is
used to store data. This separation was chosen to decrease the number of components needed for

the CPU to operate, as explained below.

This RAM unit is mostly independent of the rest of the CPU and it acts as read-only memory. This
implementation was chosen over a ROM unit because using a RAM gives the CPU versatility as an
element of a larger machine, such as a computer or smartphone since new instructions can be

loaded if required to do so.

The RAM also has a clock enable port. This was added to turn off the RAM when not in use, but
more importantly, to ensure correct timing of the instructions that appear at its output. When a
new instruction is read, this control port becomes de-asserted (active high) until the execution of
the new instruction is completed. Only then is the next instruction read by enabling the control
input. This means that there is no need for an instruction register to hold the currently executed

instruction. This decreases the number of components as well as power consumption.
5.5. Data memory unit

The second RAM unit is identical to the instruction RAM; however, it is only used for storing data
such as 16-bit C++ integers specified in the project specification. Like the instruction RAM, the
capacity is also 2048 words of data, each 16 bits long. This RAM also has a clock enable port, but
in this case, it was only added to reduce power consumption of the CPU. The data RAM unit can
store new data at request, using a STORE command, with its data input port connected to the

destination register multiplexer (see subsection 5.2. ‘Instruction set’ and Appendix C).

Page 29 of 59



5.6. Register file

The register file contains eight 16-bit registers, which are implemented using D-type flip-flops.
The first register, RO, performs a specific function: it acts as a program counter (PC). This allows
direct manipulation of the PC during jump commands without any additional commands or

hardware.

The final decision was to include eight registers in the CPU as eight registers provide a reasonable
degree of versatility while being able to fit in with the 16-bit instruction word. The register file

concept was mainly based on the ARM architecture [3].

5.7. Add 1 logic block

The “+1” logic block is a simple adder. Its only function is to add 1 to the current value at its input.
This output is then passed to the multiplexer at the input of the PC and is saved to it during the
next rising clock edge. This block was needed to pipeline the jumps and thus achieve a completely
pipelined CPU. During a jump, the address of the next instruction is specified by one of the
registers. The PC needs to load this value and also count up by one in the same cycle, which is not
possible (the Quartus lpm_counter megafunction used for the PC is not able to count up and load
at the same time). The solution to this problem was simple - increment the required value by one

before loading it into the PC. This Add 1 logic block is used to achieve this.

5.8. Decoder

The decoder block is an integral part of the design. It controls many operations of the CPU and
ensures correct execution of all commandes: it is responsible for controlling different components
and registers based on the current instruction. The internal logic is complex (annotated code is
provided in Appendix F), but it can be summarised in terms of output signals, which are active

high unless stated otherwise:

e RO _count - causes the program counter (PC) to increment its value by 1 when asserted.

e RO_en through R7_en - enable signals for the eight registers. The registers save the value
at their inputs when these signals are asserted.

e s1through s6 - select signals for the six multiplexers in the CPU (note: the multiplexer at
the input of the PC is controlled by the ADD1_en signal; see below).

e RAMd_wren - enables writing to the data RAM when asserted; otherwise, data is read

from this memory unit.

Page 30 of 59



e RAMd_en and RAMi_en - clock enable signals for the two RAM units. These were added
to conserve power (prevent switching when the blocks are not in use) and remove the
need for an instruction register. When not asserted, the units are disabled.

e ALU_en - an enable signal for the ALU (active low), that was added to ensure that no
undefined behaviour exists during LOAD and STORE operations and to conserve power.

e E2-acontrol signal for the state machine. When asserted it causes an extra cycle to occur,
which is needed for some instructions.

e Stack_en - an enable signal for the stack; added to conserve power.

e Stack_rst - a signal that clears the stack when asserted.

e Stack rw - a signal that causes the stack to save the value at its input when asserted.
Otherwise, a read operation is performed.

e ADDI1_en - an enable signal that controls the operation of the “+1” block. When asserted,

the multiplexer at the input of the PC chooses this block’s output to be fed into the PC.

5.9. Arithmetic logic unit (ALU)

The goal of the Verilog Arithmetic Logic Unit (ALU) is to complete any logical or arithmetic
operations efficiently so that the result can be saved back to the required register. Hence, the ALU
must be asynchronous to avoid the need for extra cycles. The only delay between the inputs to

the ALU and the result is due to the propagation delay of the logic within the block itself.

The ALU is designed and implemented as a Verilog HDL block. This is achieved using an ‘always’
block with an automatic sensitivity list. Inside this block, a ‘switch’ in the form of a ‘case’
statement is used, which, based on the opcode and the register inputs, performs the correct
operation. The output is updated whenever the opcode changes. Therefore, a clock is not required
for the ALU. Using the enable input (active low) can disable the ALU during load/store operations

to conserve power and avoid any unintended operations.

The inputs and outputs are given the “signed” flag, which indicates the use of 2’s complement.
This allows for easy comparison between Rsl and Rs2, especially for conditional jump

instructions.

Fig. 5.9 shows a snippet of Verilog code (for a more detailed description, see Appendix G).

Page 31 of 59



38 a'Iwaysl@(opcode, mulresult)

39 g egin
40 = if(tenable) begin
41 g case (opcode)
42 6'b000000: alusum = {1'bl, rd}; // IMP unconditional Jump, first bit high to indicate jump and passes through Rd
43
44 6'b000100: alusum = {1C1, 1 Conditional Jump A < B
45 6'b000101: alusum = {1C2, Conditional Jump A > B
46 6'b000110: alusum = {1C3, conditional Jump A = B
47 6°b0oo0111: alusum = {ic4, 4 conditional Jump A = 0
48
49 6'b001000: alusum = {1C5, conditional Jump A >= B AlcB
50 6'b001001: alusum = {1C6, conditional Jump A <= B Al>B
51 6"b001010: alusum = {3C7, 7 conditional Jump A != B
52 6'b001011: alusum = {3C8, Conditional Jump & < O
53
54 6'b001100: alusum = {1'b0, Rsl // AND Bitwise AND
55 6'b001101: alusum = {1'b0, Rsl / OR Bitwise OR
56 6'b001110: alusum = {1'b0, Rsl // XOR Bitwise XOR
57 6°b001111: alusum = {1'b0, ~Rsl}; // NOT Bitwise NOT
58
59 6'b010000: alusum = {1'b0, ~Rsl | ~Rs2}; // NND Bitwise NAND
60 6°b010001: alusum = {1'b0, ~Rsl & ~Rs2}; ! NOR Bitwise NOR
61 6 b010010: alusum = {1'b0, Rs1l ~A RsS2}; // XNR Bitwise XNOR
62 6°b010011: alusum = {1'b0, Rs1}; // MOV Move (Rd = Rsl)
63
64 o 6'b010100: begin )
65 alusum = {1'b0, Rs1} + {1'b0, Rs2}; // ADD add (Rd = RSl + Rs2)
66 carry = alusum[16];
67 _end

. . ) .

Fig. 5.9: Snippet of the ALU’s Verilog HDL code
5.10. Multiplier

5.10.1. Initial ideas

The multiplier is an integral part of any ALU, which meant that the final design needed to be both
power- and speed-efficient. Considering these requirements, initial ideas came from some basic
multiplier designs: an array multiplier or one built using the Ancient Egyptian/Russian peasant

algorithm. However, neither of these were suitable for the project requirements:

An array multiplier is built using binary multiplication rules, forming partial products using bits
of the two numbers being multiplied. The partial products are shifted and added, as explained in
the lecture slides from MIT [4]. The main advantage of this design is that only combinational logic
is used, meaning multiplication can be completed in one cycle. As pointed out by M. Moeng and J.
Wei [5], implementing an N-bit array multiplier would require N2 full adders and N2 AND gates.
Therefore, this implementation comes with two significant drawbacks: high power consumption
and more importantly, complex debugging. For a 16-bit multiplier, this implementation would
require 256 full adders and 256 AND gates (debugging it would be close to impossible). Another
potential drawback could be a high propagation delay, due to the high number of logic gates,
however this was not investigated in detail. Numerous optimisations of the basic array multiplier
exist, the most notable being the Wallace multiplier [6], but the final decision was to try a different

approach.

Ancient Egyptian/Russian peasant algorithm [7]: A reasonably straightforward algorithm,
where one of the multiplied numbers is repeatedly divided by 2, while the other is repeatedly
multiplied by 2. Initially, the product is set to 0. If the result of the division is odd, add the
multiplied number to the result. This process is repeated until repeated division by 2 produces 1.

Implementing this would be relatively easy since the algorithm requires two shift registers and a

Page 32 of 59



32-bit adder. The biggest drawback of this implementation is that multiplication could take up to
16 cycles! Furthermore, this implementation would make it very hard to pipeline the CPU. This
design would be a good fit for circuits where speed does not matter as much as it does in a CPU
since it is easy to implement and requires very few components. An application of this algorithm
which comes to mind would be a basic calculator, which acts as an ALU with only one arithmetic

instruction being executed at any given time.
5.10.2. Lookup table and Karatsuba's algorithm

The final implementation was based on the circuit designed by M. Moeng and ]J. Wei [5]. This
circuit provides a nice balance between the number of cycles to complete the multiplication and
the complexity of the circuit. The main difference between the design proposed in [5] and our
implementation is the lack of pipelining. It was not necessary to pipeline the multiplier, as the

overall CPU was pipelined.

The circuit is built using a lookup table, the Karatsuba algorithm and a multiplication property

observed by Ling [8] and Vinnakota [9].

Multiplication property: If two numbers, A and B (where B is smaller than or equal to A) are
being multiplied, then the product P=AB, is given by the algorithm below; for proof and examples

see publications from Ling [8] and Vinnakota [9].

+B

A A-B o
Letx = [ J andy = [T ; then P is given by:

P = x? — y2,if the numbers A and B have the same parity and

P = x? — y? + B, otherwise.

The Karatsuba algorithm: Let X be an N-bit binary number: then define X as {Xi, Xo}, where X;
represents the first N/2 bits and X, is the second group of N/2 bits. The algorithm states:

1. For A and B, define {A1, Ao} and {B1, Bo}, where A and B are N-bit long binary numbers

2. Form the following products using an N/2-bit multiplier: P1=A1B1, P.=A1Bo, P3=A¢B1 and
P4=A0Bo.

3. Let X<<K, denote a left shift of X by K bits. Then the final product of A and B is given by
P=(P1<<N)+ (P2<<N/2) +(P3<<N/2) + P4

Lookup table: The purpose of the lookup table is to store all the squares of integers up to and
including 255 so that they are available at run-time. These are used for 8-bit multiplication, using
the property described above. The lookup table was implemented using a ROM unit with 256

words, with each word 16 bits long. The ROM is used to store the squares of 8-bit numbers: with

Page 33 of 59



8-bits, there are 256 possible numbers and, at most, the square of such a number will require 16

bits. The .mif file was generated using a C++ program.
5.10.2. Final implementation and verification

The final implementation consisted of four 8-bit multipliers and three 32-bit adders. First, the 8-

bit multiplier was designed and tested.

The 8-bit multiplier was implemented using the previously mentioned multiplication property

and a lookup table. Firstly, two arithmetic components and a right shift (which is equivalent to
division by 2 and the floor function) are used to calculate x = lA;—BJ andy = l%]. Values x and

y are then fed to the ROM unit as addresses to the lookup table, to obtain their squares. Address
N in the lookup table contains the square of number N. To determine whether to add B or not to
the final product, a multiplexer was used with a select line obtained from an XOR gate of the least
significant bits of the two multiplied numbers (checking the parity of the two numbers in

accordance with the multiplication property).

While designing this circuit, a timing problem was encountered - the ROM unit could not be made
asynchronous within the Cyclone IV family. The initial plan was to have the lookup table
asynchronous so that that multiplication could be completed in one cycle. However, this was not
possible, so the decision was to proceed with a synchronous implementation. Even though three
cycles would make it slightly harder to pipeline the overall CPU, the CPU already needed to

support three-cycle, such as loading instructions.

To complete the 16-bit multiplier, the final circuit made use of the 8-bit multiplier and the
Karatsuba algorithm, as described above. The partial products are shifted left and added using

three 32-bit arithmetic components. The final circuit can be seen in Appendix L.
5.11. Stack

A major advantage of this CPU is the ability to run subroutines and nested functions. One way of
handling these is to store the values needed after the end of each subroutine to the data RAM and
load them back into the registers once the call is completed. However, this is not a practical
implementation as there is only a limited number of registers available. The alternative is to have
a temporary storage block for these variables, which would be quicker to access than a RAM and
would allow for nested subroutines. A stack is usually implemented either using specific branch
opcodes (such as in ARMv8 [1]) or by using a stack block which is similar to a RAM unit but
without control over which memory locations are written or read, hence requiring fewer logic

components and a smaller chip area.

Page 34 of 59



All the memory megafunction blocks provided in Quartus are of the FIFO (First-in First-out) type,
which are usually used for a queue or list where the order of the data must be maintained.
However, when executing a subroutine, the data from previous subroutines must be returned to
the registers as the program steps out of each subroutine in order. This required a LIFO (Last-in

First-out) buffer block.

The LIFO stack buffer was implemented as a Verilog HDL block based on code by an anonymous

author [10] as shown below.

1 module LIFostack (Din, c<lk, en, rst, rw, Dout, empty, fulll;

2

3 input [15:0] pin; // Data being fed to stack

4 input clk; clock signal input

5 input en; // disable stack when not in use

6 input rst; reset pin to clear and reinitialise stack (active high)

7 input rw; 0: read, 1: write

8

9 output reg [15:0] Dout; // Data be'mg pulled from stack

10 output reg empty; goes high to indicate SP is at O

11 output reg full; goes high to indicate sp is at (slots)

12
13 reg [5: D] sp; // Points to slot to save next value to
14 integer 1;
15 reg [15:0] mem [31:0];
16
17 Halways @ (posedge c1k) begin
18 | if 'en), J/ if not enabled, ignore this cycle
19 @ else be in

20 @ (rst) begin // if rst is high, clear memory and reset pointers/outputs
21 Dout = 16 h0000;

22 SP = 6'b000000;

23 empty 1'b1;

24 = for (i = 0; '|<32;'i='i+1) begin

25 mem[i] = 16 'h0000;

26 - end

27 - end

28 @ else be in

28 3 (full && rw) beg'ln / write when NOT full & writing

30 mem[sP] = Din; // store data into current slot

31 SP = 5P + 1 bl / Increment stack pointer to next empty slot
32 full = (sp == 5" Jl'j')')')')) ?1 :0; f// stack is full if sP is (slots)
33 empty = 1'b0; // stack is never empty after a push

34 - end

35 = else if (lempty && 'rw) begin // rRead when NOT empty & reading

36 SP = 5P - 1'bl; // Decrement stack pointer to last filled slot
37 Dout = mem[SP], / output data from last filled slot

38 mem[SP] = 16"h0000; // Clear slot after setting output

39 full = 1'b0; // stack is never full after a pop
40 empty = (SP = 6 b00000D0D) ? 1 : 0; // stack is empty if SP is 0
41 - end
42 o end
43 - end
44 end
45 L
46 endmodule
47 |

Fig 5.11: Stack Verilog code
5.12. Multiplexers

Multiplexers are simple asynchronous logic devices. They were custom made in Verilog as this
improved readability over using built-in megafunctions. Their initial design was a block diagram
that contained some smaller multiplexers chained together. This was later changed to a more
elegant Verilog implementation since it provided a more efficient circuit. The multiplexers simply

select which input to pass to their output based on their select input line(s) (see Appendix J).

Page 35 of 59



6. Final analysis of design

The following section describes some test results, as well as an analysis on power consumption
and clock frequency of the CPU. Many tests were performed on the two versions (original and
pipelined) of the CPU to quantise its performance. The initial maximum frequency tests were
done with both the original design as well as the pipelined design to see the performance impact
of pipelining. Further tests were only performed on the pipelined version as it performed better

than the original design.
6.1. Benchmark tests

Before performing the three benchmark tests outlined in the project specification, every
command was tested individually in a custom-made program. The three tests were then
translated into code executable by the CPU and tested using the pipelined version of the CPU. The
waveform simulation results were recorded and can be seen in Appendix L. Multiple scenarios
were considered for each test so that the CPU’s functionality was thoroughly verified. The real
time taken for each of the tests to complete was calculated using the value of 9.091 ns as the true
clock period. This value was obtained from running timing simulations (see subsection 6.2.
‘Maximum clock frequency tests’ for more details). The geometric mean time was calculated using
Tz = (TyT,T5)Y/? where Ty, T, and T represent the time taken for each test to complete. Fig 6.1

shows a summary of these results.

Test Number of Cycles | Real Time Taken | Geometric Mean Time
Fibonacci
(n=5) 221 2.0091 ps
44 0.400 ps
LCG (average) (average) 0.685 ps
Linked List 44 0.400 ps
(10 elements) (average) (average)

Fig. 6.1.a: Summary of the results of the three benchmark tests
6.2. Maximum clock frequency tests

create_clock -name {CLK} -period 9.1 [get_ports {CLK}]
The line above shows the Synopsys Design Constraints file used to set up timing tests, setting the

clock input to a target period of 9.1ns giving a frequency of approximately 110MHz.

The three different models shown in Fig. 6.2 have different delays and gate transition speeds
which affect the total propagation delay of signals within the CPU. A longer delay means that a
block has longer setup and hold times to produce outputs, for given inputs. A longer delay results

in a lower maximum clock frequency. The limiting factor of the maximum clock frequency was

Page 36 of 59



usually due to the data delay between the instruction RAM and the stack. Initially, this seemed to

be a false path as there is no instruction for which data flows directly to the stack.

Further analysis using the TimeQuest tool (shown in Appendix K) revealed that the limiting path
was the control path for the stack block which travels from the instruction RAM through the
decoder (which provides control signals for the stack) to the stack itself. This results in a delay of

between 9 and 9.5ns on the Slow 85C model and around 5ns on the Fast 0C model.

Maximum Frequency
Model Original Pipelined Pipelined -RRC
Slow 1.2V 85C | 102.57 MHz | 106.08 MHz 109.51 MHz
Slow 1.2V 0C 112.79 MHz | 117.44 MHz 121.29 MHz
Fast 1.2V 0C 184.84 MHz | 193.57 MHz 199.20 MHz

Fig. 6.2: Results of the maximum clock frequency with different test cases.
Note: -RRC indicates the removal of the RRC instruction from the ALU. Original stands for the

CPU design before pipelining.

The timing tests were first done using the original design, with each instruction taking between
two and three cycles, averaging ~0.4 instructions per cycle (IPC). On the pipelined version, each
instruction takes between one and two cycles, averaging an IPC of ~0.86. Along with increased
maximum clock frequency, pipelining caused an increase of ~125% in instructions executed per

cycle over the original design.

The third column shows the tests repeated with the pipelined version but with the RRC

instruction removed from the ALU, which further improved the clock frequency.
6.3. FPGA area and utilisation tests

When each version of the CPU was compiled fully, the Fitter report showed how much of the
selected FPGA was utilised as well as a breakdown of the resources that each instance within the
design required. The breakdowns listed the number of logic cells used within each instance as

well as the number of registers and the amount of memory in bits.

Resource Usage
Version Logic Cells | ALU Logic Cells | Logic Registers | Memory (Bits)
Original 3186 1868 667 73728
Pipelined 3212 1868 666 73728
Pipelined -RRC 2786 1438 666 73728

Fig. 6.3.a: Resource usage within the FPGA as determined by the Fitter

Page 37 of 59



The most resource-intensive blocks were

|ALU_top:ALU| 1868 (0)
the ‘LIFOstack’ and the ALU. Within the v jalwaLu in| 1567 (1279)
ALU there was an instance named “Mod0” " Bpm_dhvideModiy 26890
Vv |lpm_divide_voo:auto_generated| 288 (0)
i i th
which contributed to almost 1/6t% of the v |abs_divider_nbg:divider 286 (26)
logic cells used by the ALU (as shown in Fig lalt_u_div_c7fdivider] 235 (235)
) . It k 27 (27
6.3.b). This was not an instance we created. o ey 27)
|mul16:MULTIPLIER) 301 (0)

The ‘1pm_divide’ block was automatically

added to the symbol due to the use of the Fig. 6.3.b: Resource utilisation breakdown of the ALU
modulus function (“%” symbol) used for the RRC instruction. After commenting out the RRC case,
logic cell utilisation of the ALU fell by approximately 15%, while also increasing the maximum
clock frequency. We decided to continue with this instruction removed as it has very similar
functionality to the ROR instruction and is also difficult to use since the carry bit would have to
be set by the previous instruction. However, our instruction definitions do not include

information on how to use a carry bit or whether to ignore it, compared to the ARM architecture.

The difference in utilisation is fully shown in Appendix M.
6.4. Power analysis tests

All the power analysis tests were done with the target clock period set to 9.091ns (clock
frequency setto ~110 MHz) as this is close to the maximum for the original design using the Slow

1200mV 0C Model.

Dynamic Power | Static Power Confidence
Original 58.87 mW 43.53 mW | Low: insufficient toggle rate data
Pipelined 35.00 mW 43.46 mW Low: insufficient toggle rate data
Pipelined -RRC 33.14 mW 43.40 mW | Low: insufficient toggle rate data

Fig. 6.4.a: Thermal Power Dissipation of the three versions of the CPU

The confidence level remained low during all the tests as we did not have a Value Change Dump
(VCD) file which provides the Power Analyser with information about how often the nodes within
the device change state. Without this information, the Power Analyser guesses the states either
from a previous simulation or using a conservative estimate that the nodes change state ataround
12.5% of the frequency of the input clock signal. The static power remained similar through all
three tests since the Fitter picked the same device and the design had roughly the same number
of static devices such as RAM units and registers. Pipelining had a significant impact on the
dynamic power consumption of the circuit, causing a reduction of ~41%. This is primarily due to
reduced signal switching between different states. The FETCH state that existed in the original
design sets many control lines to low during the FETCH phase and then back to high during

EXEC1. However, in the pipelined version the FETCH cycle is removed. In this version, the lines

Page 38 of 59



can remain high, significantly reducing the amount of switching between cycles and thus,

decreasing dynamic power consumption.

7. Reflection

The following section summarises our team'’s evaluation of the success of the final design, as well

as providing some personal thoughts on the project progression and outcome.
7.1 Project success

Before starting this project, a list of functional and non-functional requirements has been made
(see subsection to 2.2 ‘Project specification’). Most of those requirements have been met, but

some required more work than expected.

Implementing a multiplier circuit proved to be a challenging task, which required researching
many different implementations. The biggest drawback of our multiplier is the fact that it is
synchronous. Therefore, it takes two cycles to calculate the product. Initially, the aim was to use
one of the many asynchronous memory blocks available in Quartus. This would make the
multiplier block asynchronous and more efficient. However, asynchronous memory blocks are

not available within Cyclone IV.

Pipelining turned out to be a handy add-on to the final design. Not only did pipelining reduce the
number of cycles needed to complete a particular instruction, but it also reduced the overall
power consumption and increased the maximum clock frequency. It is important to notice that
without pipelining the last non-functional requirement would not have been met. A non-pipelined
circuit was consuming just over 50mW of dynamic power, but a pipelined circuit stayed well

below the threshold of 50mW (for more information see section 6. ‘Final analysis of design).

Using the Harvard architecture with separate instruction and data memory proved to be the right
choice. Due to the nature of the architecture, the occurrence of self-modifying code is virtually
impossible. Furthermore, using the Harvard architecture prevents the pipeline stall during a store
instruction as seen in MUO. Finally, we believed that using this architecture would reduce power

consumption.

The CPU successfully executed the three required tests, as set out in the specification (see
subsection 6.1 ‘Benchmark tests’). There were no specialised instructions and the source codes
could be implemented directly into the CPU just by using basic instructions such as loading,
jumping and arithmetic. As expected, the Fibonacci test took the longest time to complete. This is

not due to the CPU architecture, but due to the nature of the recursive algorithm. Even though

Page 39 of 59



there are many different ways to calculate Fibonacci numbers, some much faster than recursion,
implementing recursion into the CPU turned out to be a challenging, but worthwhile task. The
CPU is capable of performing a wide range of recursive functions, rather than just being limited

to calculating the nth Fibonacci number.
7.2 Future work

Even though the final CPU is capable of performing a wide range of operations, there are a few
features that might be considered in the future. The instruction set is quite versatile and with 64

opcodes available, more instructions could be added.

An instruction that comes to mind is an immediate load. This was not implemented initially
because the instruction word length is not long enough to support an 11-bit data memory location

with the chosen template for instructions in the ISA.

Secondly, indirect memory addressing might be improved, to take into account register offsets.
ARMVS8 supports many different types of indirect addressing [1], including those with offsets.
While this was not a requirement of the project, such an instruction might be useful when the CPU

is considered as a part of a larger system.

Finally, many algorithms require floating point numbers and division. With these two features
added and the current arithmetic capabilities, the CPU would be able to deal with many advanced

mathematical concepts such as Maclaurin series, trigonometric functions and exponentiation.
7.3 Final thoughts

This project was quite challenging but also rewarding. We learned quite a lot about modern CPU
architectures and implementations of certain digital circuits, such as ALUs, multipliers and
memory buffers. Furthermore, we obtained key skills around project management, planning and
writing documentation. The project went mostly according to plan with few minor issues along

the way and was submitted on time.

Page 40 of 59



8. Bibliography

[1] ARM, “ARM Information Center”.
Available: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204j/Cjafedih.html
[Accessed: May 18, 2020].

[2] E. De Vries, “Introduction to the MIPS Processor”, 2016.
Available: https://www.scss.tcd.ie /jeremy.jones/vivio/dlx/dIxtutorial.htm [Accessed: May 17,

2020].

[3] Arm Limited, “Assembler User Guide: ARM registers”.
Available: http://www.keil.com/support/man/docs/armasm/armasm dom1359731128950.htm
[Accessed: May 18, 2020].

[4] Massachusetts Institute of Technology, “Arithmetic Circuits & Multipliers”, 2016. Available:
http://web.mit.edu/6.111/www/f2016 /handouts/L08.pdf [Accessed: May 23, 2020].

[5] M. Moeng and ]. Wei, “Optimising Multipliers for the CPU: A ROM based approach”, 2007.

Available: https://people.eecs.berkeley.edu/~kubitron/courses/cs252-

S07/projects/reports/project6 report ver2.pdf [Accessed: May 25, 2020].

[6] C. S. Wallace, “A Suggestion for a Fast Multiplier”, IEEE Transactions on Electronic Computers, vol.
EC-13, (1), pp. 14-17,1964. DOI: 10.1109/PGEC.1964.263830 [Accessed: May 23, 2020].

[7] Wikipedia contributors, “Ancient Egyptian multiplication”, 2020.

Available: https://en.wikipedia.org/w/index.php?title=Ancient Egyptian multiplication&oldid=957

721403 [Accessed: May 23, 2020].

[8] H. Ling, “An approach to implementing multiplication with small tables”, IEEE Transactions on

Computers, vol. 39, (5), pp. 717-718, 1990. DOI: 10.1109/12.53588 [Accessed: May 25, 2020].

[9] B. Vinnakota, “Implementing multiplication with split read-only memory”, IEEE Transactions on

Computers, vol. 44, (11), pp. 1352-1356, 1995. DOI: 10.1109/12.475134 [Accessed: May 25, 2020].

[10] Anonymous, “Verilog for Beginners: Last-In-First-Out Buffer”. Available:

https://esrd2014.blogspot.com/p/last-in-first-out-buffer.html [Accessed: Jun 04, 2020].

[11] AVR Microcontrollers, “AVR Instruction Set Manual,” 2016. Available:
http://ww1.microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf

[Accessed: May 20, 2020].

[12] P. Johnson, “LIFO”, 2009. Available: https://www.beyond-
circuits.com/wordpress/2009/10/lifo/ [Accessed: Jun 04, 2020].

Page 41 of 59


http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204j/Cjafgdih.html
https://www.scss.tcd.ie/jeremy.jones/vivio/dlx/dlxtutorial.htm
http://www.keil.com/support/man/docs/armasm/armasm_dom1359731128950.htm
http://web.mit.edu/6.111/www/f2016/handouts/L08.pdf
https://people.eecs.berkeley.edu/~kubitron/courses/cs252-S07/projects/reports/project6_report_ver2.pdf
https://people.eecs.berkeley.edu/~kubitron/courses/cs252-S07/projects/reports/project6_report_ver2.pdf
https://en.wikipedia.org/w/index.php?title=Ancient_Egyptian_multiplication&oldid=957721403
https://en.wikipedia.org/w/index.php?title=Ancient_Egyptian_multiplication&oldid=957721403
https://esrd2014.blogspot.com/p/last-in-first-out-buffer.html
http://ww1.microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf
https://www.beyond-circuits.com/wordpress/2009/10/lifo/
https://www.beyond-circuits.com/wordpress/2009/10/lifo/

9. Appendix

A. C++ test codes

A.1. Calculate Fibonacci numbers using recursion

int fib(const int n){
int y;
if (n<=1) y = 1;
else {

y
y

fib(n-1)
y + fib(n-2);

n in the current function call; used to communicate between calls (input)
f the last call; used to communicate between calls (output)

number 0x2, the value to subtract for the fib(n-2) call
number 0x7, the address of the beginning of the fib function
number 0xD, the address of the beginning of the 'else' part of the fib function

(skips the STP command)

(program end)

(load master n into R1)

(load 0x1, number needed for n<=1 comparison, to R7)

(load 0xD, memory location of the 'else' part of the 'fib' function, to R6)

(load 0x7, memory location of the beginning of the 'fib' function,
(load 0x2, number needed for fib(n-2) call, to R4)

(jump to 'else' part if n>1)

(make y = 1)

(load master n to R7)

(if current n = master n, jump to stop)

(set R7 to 0x1 again)

(return from call)

(beginning of 'else' part; push current n to stack)
(decrease n by 1)

(call fib(n-1), i.e. jump to 0x7 and save the current head)
(retrieve current n from stack)

(make output y = current y, i.e. y = fib(n-1))

(push current y onto stack)

(push current n onto stack)

(decrease n by 2)

(call fib(n-2), i.e. jump to 0x7 and save the current head)
(retrieve current n)

(retrieve current y)

(make output y = output y + current y, i.e. y = y + fib(n-2))
(load master n to R3)

(if current n = master n, jump to stop)

(if master n hasn't been reached, return from call)

'else' part of 'fib' function).
'fib' function).

.

return y;
1 Comments:
2 R1 holds
3 R2 holds y o
4 R3 holds y of the current function call
S R4 holds the
6 RS holds the
7 R6é holds the
8 R7 holds the number 0xl1 for the comparison 'n<=1‘'
9
10 (0x0) JMA 2
11 (0x1) STP
12 (0x2) LDA R1 ##MEMORY_ LOCATION_OF_n##
13 (0x3) LDA R7 ##MEMORY LOCATION CONTAINING Ox1##
14 (0x4) LDA R6 ##MEMORY LOCATION_ CONTAINING_ OxD##
15  (0x5) LDA RS ##MEMORY LOCATION_CONTAINING_Ox7##
16 (0x6) LDA R4 #CHEMORY_LOCATION_CONTAINING__OXZ‘l
17 (0x7) JC2 R6é R1 R7
18 (0x8) MOV R2 R7
19 (0x9) LDA R7 ##MEMORY LOCATION OF n##
20 (0xA) JC3 R2 Rl R7
21 (0xB) MOV R7 R2
22 (0xC) RTN
23 (0xD) PSH Rl
24 (OxE) SBO R1 R1
25 (0xF) CLL RS
26 (0x10) POP R1
27 (0x11) MOV R3 R2
28 (0x12) PSH R3
29 (0x13) PSH R1
30 (0x14) SUB R1 R1 R4
31 (0x15) CLL RS
32 (0x16) POP R1
33 (0x17) POP R3
34 (0x18) ADD R2 R2 R3
35 (0x19) LDA R3 ##MEMORY_ LOCATION_OF n##
36 (0x1a) JC3 R7 R1 R3
37 (0x1B) RTN
38
39
40 Example that can be used with the instruction generator program:
41 JMA 2
42 STP
43 LDA R1 O
44 LDA R7 1
45 LDA R6 2
46 LDA RS 3
47 LDA R4 4
48 JC2 R6é Rl R7
49 MOV R2 R7
S50 LDA R7 O
51 JC3 R2 R1 R7
52 MOV R7 R2
53 RTN
54 PSH R1
55 SBO R1 Rl
56 CLL RS
57 POP R1
58 MOV R3 R2
59 PSH R3
60 PSH R1
61 SUB R1 Rl R4
62 CLL RS
63 POP R1
€4 POP R3
65 ADD R2 R2 R3
66 LDA R3 0
€7 JC3 R7 R1 R3
68 RTN
(3
70 Requires setting the following data memory locations:
71 Set location '0x0' to value of n.
72 Set location '0x1' to value of 0x1 (used for n<=1 comparison).
73 Set location 'Ox2' to value of 0xD (beginning of
74 Set location '0x3' to value of 0x7 (beginning of
75 Set location '0x4' to value of 0x2 (used for fib(n-2) call).

Page 42 of 59

to RS)



A.2. Calculate pseudo-random integers with a linear congruential generator (LCG)

int lcong(
const unsigned int
const unsigned int
const int n,

const unsigned int

—

=
CWOLOU B WK

a,
b,

s)

unsigned int y = s;
unsigned int sum =
for (int i =n; i > 0; i--){

y = y*a + b // calculate the new pseudo-random number
= sum +y // add it to the total

sum
}
return sum;
Comments:
Rl holds y, as described in the source
R2 holds a, as described in the source
R3 holds b, as described in the source
R4 holds n, as described in the source
RS holds the output (sum),
R6 holds
R7 holds the number 0x€é (for jumping back)
(0x0) LDA R1 ##MEMORY LOCATION OF s##
(0x1) LDA R2 ##MEMORY_ LOCATION OF a##
(0x2) LDA R3 ”MEMORY_LOCATION_OF_b.‘
(0x3) LDA R4 ##MEMORY LOCATION_OF n##
(Ox4) LDA R6 iSMEMORY_LOCATION_CONTAINING_OXACf
(0x5) LDA R7 ##MEMORY_LOCATION_CONTAINING 0x6##
(0x6) JC4 R6 R4
(0x7) MLA R1 R2 R3
(0x8) ADD RS RS R1
(0x9) SBO R4 R4
(0xA) JMP R7
(0xB) STP
Example that
LDA R1 O
LDA R2 1
LDA R3 2
LDA R4 3
LDA R6 4
LDA R7 S
JC4 R6 R4
MLA R1 R2 R3
ADD R5 R5 R1
SBO R4 R4
JMP R7 R6
STP
Requires setting the following data memory location:
Set location '0' to value of s;
Set location 'l' to value of a;
Set location '2' to value of b;
Set location '3' to value of n;
Set location '4' to value of O0xB;
Set location '5' to value of 0x6;

9;

code
code
code
code

as described in the source code
the number OxB (for jumping to the end of the program)

(loads the seed, s, into R1, which then becomes y as in the source code)
(loads a into R2)

(loads b into R3)

(loads n into R4)

(loads 0xB, memory location of program end to Ré6)

(loads 0x6, memory location for jumping back)

(if R4, in this case, n, is equal to 0, then jump to end, STP)
(multiply and add, same as in the source code y=y*a+b)

(adds y to the sum, so that sum+=y, as in the source code)
(decrease R4, i.e. n by one, so no infinite loops occur)
(jumps back to check whether n>0 and if so, repeats again)

can be used with the instruction generator program:

Page 43 of 59



A.3. Traverse a linked list to find an item

typedef struct item{

} item_t;

int

value;

struct item *next;

item_t* find(const int x, item_t* head){
while (head->value != x){

head = head->next;
if (head == NULL) break;

return head;

Comments:

R1
R2
R3
R4
RS
RE
A

holds
holds
holds
holds
holds
holds
linked

x, value to be found
head, the memory location of the first element

the number END = 16b'0000100000000000'=0x800 (for comparing, this is the end of the linked list)

the current element in the traversed list

the number 0xB (for jumping to the end)

the number 0x5 (for jumping back)

list pair is stored as men([N]=value and mem[N+1] = address of next element

(0x0) LDA R1 ##MEMORY LOCATION_OF x##

(loads

the value to be found, x, into R1)

(0x1) LDA R2 ##MEMORY_LOCATION_OF head##

(0x2

(0x3

(loads

the address of the first element into R2)

) LDA R3 ##MEMORY_ LOCATION_OF_END##

(loads

a number (0x800) to R3 which is our definition of an end of a linked list)

) LDA RS ####MEMORY_ LOCATION_CONTAINING OxB##

(loads

a number (0xB) to RS which is used for jumping to STP, when the element is

(0x4) LDA R€ ####MEMORY LOCATION_CONTAINING_OxS##

(loads

a number (0x5) to R6 which is used for jumping to back, if current element

(0xS) LDR R4 R2

(loads

R4 using data from the memory address which is the value in R4)

(0x6) JC3 RS R4 R1

found or no elements left)

is not the required element and there are still elements left)

(jumps to the end ('STP') if R4 (current element) is equal to R1 (required element))
(0x7) ADO R2
(adds one to R2, which when completed contains the address of the address of next element in the linked list)
(0x8) LDR R2 R2
(loads the address of the next element into R2, thus updating the current head)
(0x9) JC3 RS R2 R3
(jumps to the end ('STP') if R2 (current head) is equal to R3 (end of list)
(0xA) JMP RE
(jumps to value stored in R4 () which repeats this process)
(0xB) STP

(program end)

Example that can be used with the instruction generator program:

LDA
LDA
LDA

R1
R2
R3
RS
R6
R4

m e WwN O
(Y]

RS R4 R1

R2
R2 R2

RS R2 R3

R6

Requires setting the following data memory locations:

Set location '0' to value of x;

Set location 'l' to value of head;

Set location '2' to value of 0x800 (end of linked list)
Set location '3' to value of 0xB (end of program, STP);
Set location '4' to value of 0x5; (going back)

Create a linked list that starts at 'head' memory location

Page 44 of 59



B. Freehand ISA map

0

The Rest
o Load / Store
1bit  gpits 3bits 3 bits 3 bits src reg 1bit 1 bit 3 bits 11 bits
whlch dstreg srcreg1 2 (ignored 0 load (LDA) register mem.
operation for some 1store (STA)  no. address
operations)
oo JMP 0000 0O- Unconditional Jump . ) N )
01 JMA 0000 O - Unconditional Jump to address For all jumps = A = Rs1, B = Rs2, Rd is the destination of jump
04 JC1 000100 - Conditional Jump (A < B)
05 JC2 000101 - Conditional Jump (A > B)
06 JC3 000110 - Conditional Jump (A = B)
o7 JC4 00011 - Conditional Jump (A = 0)
os JC5 0010 00 - Conditional Jump (A >=B /A I<B)
og JC6 0010 01- Conditional Jump (A <=B/A !> B)
0A JC7 001010 - Conditional Jump (A != B)
OB JC8 0010 1 - Conditional Jump (A < O)
oC AND 001100 - Bitwise AND (Rd = Rs1 && Rs2)
op OR 0O101-Bitwise OR (Rd = Rs1 || Rs2)
OE XOR 001110 - Bitwise XOR (Rd = Rs1 XOR Rs2)
OF NOT 0O 11 - Bitwise NOT (Rd = !Rs1)
10 NND 0100 00 - Bitwise NAND (Rd = !(Rs1 && Rs2))
n NOR 0100 O1 - Bitwise NOR (Rd = !(Rs1 || Rs2))
12 XNR 0100 10 - Bitwise XNOR (Rd = !(Rs1 XOR Rs2))
13 MOV 0100 11 - Move (Rd = Rs1)
1 ADD 010100 - Add (Rd = Rs1 + Rs2)
15 ADC 010101- Add w/ Carry (Rd = Rs1+ Rs2 + C)
1B ADO 010110 - Add 1 (Rd = Rs1 + 1)
o101 -
.8 SUB 0110 OO0 - Subtract (Rd = Rsl - Rs2)
19 SBC 0110 01 - Subtract w/ Carry (Rd=Rs1-Rs2 + C-1)
1A SBO 01010 - Subtract 1 (Rd =Rs1-1)
onon-
1 MUL 01100 - Muttiply (Rd = Rs1 * Rs2)
1D MLA 0111 O1 - Multiply and Add (Rd = [Rd*Rs1] + Rs2)
1E MLS 011110 - Multiply and Subtract (Rd = Rs2 - [Rd*Rs1])
F MRT 011111 - Retrieve Multiply MSBs (Rd = MSBs)
20 LSL 1000 0O - Logical Shift Left (Rd = Rs1 shifted by value of Rs2)
21 LSR 1000 01 - Logical Shift Right (Rd = Rs1 shifted by Rs2)
22 ASR 1000 10 - Arithmetic Shift Right (Rd = Rs1 shifted by Rs2, maintaining sign bit)
1000 1 -
24 ROR 100100 - Shift Right Loop (Rd = Rs1 shifted by Rs2, but Rs1[0]-+Rs1[15])
25 RRC 100101 - Shift Right Loop w/ Carry (Above but Rs1[0]-+Carry & Carry-+Rs1[15])
26 CLL 100110 - Call (jumps to a given instruction while saving the current index to stack)
27 RTN 100111 - Return (retrieves a value from stack, loads into PC and fetches the instruction)
28 PSH 1010 0O - Push onto stack (Stack = Rs1)
20 pop 1010 O1- Pop from stack (Rd = Stack)
24 LDR 101010 - Indirect Load (Rd = Mem[Rs1])
28 STR 1010 11- Indirect Store (Mem([Rd] = Rs1)
3E NOP 11110 - No Operation (Do nothing for a cycle)
3F STP 1M 11 - Stop (Program Ends)

Page 45 of 59



C. Complete Block Diagram File

DECODE
— instf15.0 RO couf——E2-524
S pipaiini =EETE reTer RO ef 2
e
wCLE | J . FETC) 2 Exec R1 ef -
gz ]S FETCH e wEXEC | Porr R2 RS
E EXECI™ o ve e ] R3 ef—B-50x
—Rs1 EXEC Re
Ré ef——p =¥
RS ef—H3-SCx
- I— RE of —o-SCx
R7 ef— =%
sz o—Lilk
B al15.01| inzuiy 5212 il
datzal {BUSMU: 32 q—Elile
o . saf—it—x
address[10. insil10s__dataall ™ RAMA Wil RAMd wres
g o0 ( databl RAM o RAM‘Q er
MUXE i RAMI e—%u—ﬂ
JRAmi_g clken ALUE;!-JE_X——'.‘”—“
- RAM Block type: AUTC “
e - — stack of stack_gs
— ] mux_8xit stack r's—u":ﬁ
: g | stack py
. reg file peroe ”m_,m 0 result15. Bs1l1s « di50 slackSEn r
RO er | |CLK RO_out(15.01 [ gal15 o in0l15..0 se—SE
= |Ro_en R1_out(15.01 | por1s | in115.0 address[10 E ADD1 g—ADRLe
M—m cou | RO_in[15.0] R2_out{15.0) [ gans 3150 —
RO_count  R3_out(15.01T paris o '"3:‘;2
*R1_in(15.01 R4_out(15.0) [ gery indl1 <
e RS_out(15.0) [ perie s '"D": g RAMd_e| clken B
R2_in[15.0] R6_out(15.0] 6l | Ramic_ Block troe: AUTC
R2_er Rz:gn R?:nu([15 a BZ01s ¢ in715.0 - Bamd outl1s  dataal .
R3_In[15.0) e — - — )
R3 er - uU_top |
R3_en MUX* ALY er | o “’_
T R4_in[15.0] mux 81 ALU_en Rout[15..0] N MUX4
- R4_en e [ . Rs1(15.0] COND [emaddyio
- T [RS_in[15.0] 5[2.0 result1s. Rs2[15.0] memaddr[10.0]
T in0i15.0 — RA[15.0]
R6_in[15.0] in115.0 e instr(15.0]
s X 215.0 2 e
B ey wEXEC
T R7_in(15.0] in3[15.0 M; K | stack_data[15.0]
RY_er A 15.0 -
R7_en ndp CLK
- insi15.0
T inBI15.0 AT
S in7M15.0 T
ADD LiFdstaci
AR gnai out15 L wEe s 0 Doutris itk cutly-
inf15.0 mux_8xtt e U1}
: sestack o1,
A e PR resultr15, peidlls st | %
in0I15.0 stack ! | o
in1i15.0
n2r16.0 gl cires s nstr15.0
in315.0 AoE LS Lolra —— PCit5 0
'"""z g RIS Caler sy R[5 0
insi1 Bals e R 0
in6I15.0 wBalleLoires —— Rys 0
in715.0 g..K:lLli.Laumu_D R4[15.0
B e sl
WO eBELLE Caiei = Rafis
i CLK b — O Bl Lcureu —— R7(15.0

Register Rs1 also feeds into RAMd so the STORE instruction can set RS1 and save the value

without enabling the ALU, shown closer below:

BAFE 1nes nanenar] s ases '

mux 8x1¢

Q.

| | 1 (5 ram
5[310; . result[15.. data[15..0]
In0MMS.. . RAMd_wrgWren

' ?n1l1 5.0 address[10..(
1in2[15..0

1in3[15..0
1in4[15..0

' in5[15..0
' in6[15..0 ~RAMd el

q(15..0]

2048 wor(gr

o

CLK clock

clken
RAMd Block type: AUTC
1in7[15..0 -

1111

Page 46 of 59



D. ASR, ROR and RRC explained

: alusum = {Rsl[!5], Rsl >>> Rs2};
Arithmetic Shift Right uses the >>> bitwise operator, which shifts “RS1” right by the value of “RS2”
while shifting in the old MSB. Then appending the original MSB to the front to create a 17-bit

number to fit in the ‘alusum’ register.

: alusum = { , (Rsl > Rs2[3:0]) | (Rsl << ( = Ra2[3:0]))}:
ROR uses both logical shift operators along with an OR to simplify a rotational shift. As RS1 is 16
bits long, every 16 shifts the result is the same as no shift and so only the last 4 bits of RS2 are
needed to determine the result. RS1 is shifted right by the value and left by 16, minus the value to
represent the LSB is shifted into the MSB with each shift. The two values are then OR’d together.

: alusum = ({Rsl, carry} >> (Rs2 % 17)) | ({Rsl, carry} << (17 - (Rs2 % 17)));
RRC is like ROR, but the LSB is shifted into the carry slot, and the previous carry value is shifted
into the MSB. As the size of the value being rotated is 17 bits rather than 16, the remainder of RS2
divided by 17 is needed. (RS2 mod 17) This results in a large Ipm_divide block being added to the
ALU.

E. CLL and RTN explained
The CLL and RTN instructions allow for an operation similar to a C++ function call and return:

e CLL Rd - saves the value of the PC to the top of the stack and loads the value of Rd into the
PC, effectively jumping to the instruction at the memory address specified in Rd.
e RTN - retrieves a value from the stack then (in EXEC2) saves this value into the PC (also

reads the instruction at that location in the pipelined version).

Due to the usage of one single stack by both the user and these instructions, the use of these
instructions needs to be given special care. A recommended call and return can be structured in

the following way:

PSH R2

0.

1. PSHR1 save the variables that need to be kept track of

2. CLLR7 make a call (R7 contains the value 0x7)

3. POPR1 retrieve the variables saved before the call was made
4. POPR2

7. Some operation

8. RTN

Page 47 of 59



F. Decoder block

The decoder is an asynchronous block which determines the current instruction from the

opcode, setting the corresponding wire (lines 44-59) high and the rest low. Next, the control

lines are set (lines 61-90) depending on which controls are needed for the current instruction as

well as the multiplexers for selecting registers Rd, Rs1 & Rs2.

Decoder.v and the symbol created from the Verilog:

1 module DECODE

2 |l DECODE
3 input [1°:0] instr, RO
4 input FETCH, —inst[15. |, r——RO_coyr
input EXECI, FETCH instrf15..0 RO cou RO en
6 input EXEC2, FETCFH RO el _— ™
7 input COND_result, EXEC" EXEC” R1 e R1_en,
8 output RO_count, EXEC; R2 en
- output RO_en, W EXEC: R2 e R3 en
output Rl _en, e N .
e COND resu R3 ef .~
output R3_en, R4 e -
output R4 _en, R5 e - Rs—mr\
output R5 en, R6_en
output Ré:en, R6 e R7 en :
output R7_en, R7 el . — %
output [°:7] s1, le.afg
output [’:0] s2, s12.07
output [2:0] =3, 52[2._0—'—52[2‘[9‘
20 output s4, JZ;&K
21 output RAMd_wren, 53[2..;] 4
22 output RAMd en, -1
23 output RAMi en, RAMd wre RAMd porer
24 output ALU_en, RAMd
output E2, RAMd ¢ RAMi
output stack en, RAMI e—'—,gr
output stack_rst, i ALU_Q[\
- output stack_rw, ALU e E2
29 output s5, E2 "
3 output s6, stack_er
31 output ADDI_en stack e stack_ts
3 )iz stack rg
33 __stack_ty
34 wire msb = instr[.5]; stack 3
35 wire 1s = instr[i{]; §
36 wire [2:0]) Rls = instr( sE s€ -
37 wire [10:0) addr = instrflo: ADD1_ei
3 wire [“:0] op = instr[ 1; ADD1 e
39 wire [2:0] Rd = instr[f:¢);
4 wizre [°:0) Rsl = instr(5:3); DECODE
41 wire [2:0] Rs2 = instr(2:0];
42
43 / erent opcodes (refer t
44 wire LDA = msb & ~ls;
45 wire STA= msb & ls;
46 wire JMP = ~msb & ~op[°) & ~op[‘] & ~op[’) & ~op[’] & ~op[!] & ~op[]);
47 wire JMA = ~msb & ~op[°] & ~op[] & ~op[’] & ~op[] & ~op[!] & opl[’):
wire JCX = ~msb & ((~op[°] & ~op[4] & ~op[’] & op(Z]) | (~op[°] & ~op[4] & op[7] & ~op[Z1));
wire MUL = ~msb & ~op[°] & op[4] & op[’] & op[’] & ~op[!] & ~op[']);
wire MLA = ~msb & ~op[°] & op[‘] & op[’] & op(:] & ~op[!] & opl’]);
wire MLS = ~msb & ~op[“] & op(¢] & op() & op( ] & opl!) & ~opl’);
wire PSH = ~msb & op(°] & ~op[4] & op[‘] & ~op[’] & ~op[!] & ~op[');
3 wire POP = ~msb & op[°] & ~op[4] & op[‘] & ~op[”] & ~op([!) & op['):
54 wire LDR = ~msb & op[°] & ~op[¢] & op[’] & ~op(Z] & op[i] & ~op(’):
wire STR = ~msb & op[®] & ~op[4] & op(:) & ~op(’] & op(!) & op('):
wire CLL = ~msb & op[“] & ~op([]) & ~op[’) & op[’] & op(!) & ~op(');
wire RTN = ~msb & op[°] & ~op[4] & ~op[’] & op(’] & opl[i] & opl’];
wire NOP = ~msb & op[°) & opl[4]) & op(’) & op[’] & opl!) & ~op[’):
wire STP = ~msb & op[°] & opl[i] & op(’] & op[’] & op(l] & opl’);
€
61 assign RO_count = (FETCH & ~STP) | (EXEC1 & ~(JMP | JMA | (JCX & COND_result) | STP | LDR | LDA | MUL | MLA | MLS | POP | RTN | CLL)) | (EXEC2 & (
LDR | LDA | MUL | MLA | MLS | POP));
62 assign RO_en = (EXEC1 & (~(STA | NOP | STP | LDA | PSH | LDR | CLL | RTN) & ~Rd[2] & ~Rd[!] & ~Rd[0] | JMP | (JCX & COND_result) | JMA)) | (EXEC2
& LDA & ~R1s[?) & ~R1s[!] & ~R1s[0]) | (EXEC2 & (MUL | MLA | MLS | POP | STR | LDR) & ~Rd[’] & ~Rd[!] & ~Rd[0]) | (EXEC2 & RTN) | (EXEC1 & CLL):
&3 assign R1 en = (EXEC1 & ~(JMP | JMA | JCX | STA | LDA | MUL | MLA | MLS | NOP | STP | POP | PSH | LDR | CLL | RTN) & ~Rd(2] & ~Rd([!] & Rd["]) | (
EXEC2 & LDA & ~Rls[’] & ~Rls[!] & R1s[0]) | (EXEC2 & (MUL | MLA | MLS | POP | LDR) & ~Rd[”] & ~Rd[!) & Rd["]);
64 assign R2 en = (EXEC1 & ~(JMP | JMA | JCX | STA | LDA | MUL | MLA | MLS | NOP | STP | POP | PSH | LDR | CLL | RTN) & ~Rd[”] & Rd[!] & ~Rd[?]) | (
EXEC2 & LDA & ~R1s[2] & RI1s[!] & ~Rls[J]) | (EXEC2 & (MUL | MLA | MLS | POP | LDR) & ~Rd[Z] & Rd[!] & ~Rd[0]);
65 assign R3_en = (EXEC1 & ~(JMP | JMA | JCX | STA | LDA | MUL | MLA | MLS | NOP | STP | POP | PSH | LDR | CLL | RTN) & ~Rd[Z] & Rd[!] & Rd4(0]) | (
EXEC2 & LDA & ~R1s[?] & RI1s{i] & RI1s[0]) | (EXEC2 & (MUL | MLA | MLS | POP | LDR) & ~Rd[2] & Rd[!] & Rd[)]);
66 assign R4 en = (EXEC1 & ~(JMP | JMA | JCX | STA | LDA | MUL | MLA | MLS | NOP | STP | POP | PSH | LDR | CLL | RTN) & Rd[”] & ~Rd[!] & ~Rd["]) | (
EXEC2 & LDA & R1s[’) & ~Rls[!] & ~R1s[7]) | (EXEC2 & (MUL | MLA | MLS | POP | LDR) & Rd[’] & ~Rd[!] & ~Rd[0]);
67 assign RS en = (EXECl & ~(JMP | JMA | JCX | STA | LDA | MUL | MLA | MLS | NOP | STP | POP | PSH | LDR | CLL | RTN) & Rd[2] & ~Rd[!] & Rd[?]) | (
EXEC2 & LDA & R1s[2] & ~Rls[l] & R1s[0]) | (EXEC2 & (MUL | MLA | MLS | POP | LDR) & Rd[Z] & ~Rd[!) & RdA[0]);
assign R6 en = (EXEC1 & ~(JMP | JMA | JCX | STA | LDA | MUL | MLA | MLS | NOP | STP | POP | PSH | LDR | CLL | RTN) & Rd[Z] & Rd[!] & ~Rd[(7]) | (
EXEC2 & LDA & R1s[’] & RIs[!] & ~R1s[J]) | (EXEC2 & (MUL | MLA | MLS | POP | LDR) & Rd[’) & Rd[!) & ~Rd[']);
69 assign R7 en = (EXEC1 & ~(JMP | JMA | JCX | STA | LDA | MUL | MLA | MLS | NOP | STP | POP | PSH | LDR | CLL | RTN) & Rd[?] & Rd[!] & RA[(']) | (
EXEC2 & LDA & RIls[’) & RIs[!] & RIs[0]) | (EXEC2 & (MUL | MLA | MLS | POP | LDR) & Rd[’] & Rd[!] & Rd[']);
assign s1[2) = (~(JMP | JMA | STA | LDA | NOP | STP | POP | CLL | RTN) & Rs1[2]) | (STA & Rls[2]):
assign s1(!) = (~(JMP | JMA | STA | LDA | NOP | STP | POP | CLL | RTN) & Rs1[!]) | (STA & Rls[!]
assign s1() = (~(JMP | JMA | STA | LDA | NOP | STP | POP | CLL | RTN) & Rs1[0]) | (STA & Rls[1]);
assign s2(°) = (~(JMP | UMA | STA | LDA | NOP | STP | POP | PSH | LDR | STR | CLL | RTN) & Rs2(’]);
assign s2[1) = (~(JMP | JMA | STA | LDA | NOP | STP | POP | PSH | LDR | STR | CLL | RTN) & Rs2[1]);
assign s2(7) = (~(JMP | JMA | STA | LDA | NOP | STP | POP | PSH | LDR | STR | CLL | RTN) & Rs2(["]);
assign s3[2] = (~(STA | LDA | NOP | STP | PSH | POP | RTN) & Rd[2]):
assign s3(1] = (~(STA | LDA | NOP | STP | PSH | POP | RTN) & Rd([!]);
assign s3[7) = (~(STA | LDA | NOP | STP | PSH | POP | RTN) & Rd[']);
assign s4 = ~(LDA | LDR);
80 assign RAMd wren = EXEC1 & (STA | STR);
1 assign RAMd en = EXEC1 & (STA | LDA | STR | LDR):
assign RAMi en = (FETCH & ~STP) | (EXEC1 & ~(LDA | LDR | MUL | MLA | MLS | POP | STP | RTN)) | (EXEC2 & (LDA | LDR | MUL | MLA | MLS | POP | RIN)):
assign ALU en = LDA | STA;

E2 = EXEC1 & (LDA | MUL | MLA | MLS | POP | LDR | RTN);

assign stack_en = (EXEC1 & (PSH | CLL | RTN | POP));
assign stack rst = STP;
7 assign stack rw = EXECl & (PSH | CLL):
assign s5 = EXECl & (STR | LDR);
] assign s6 = (EXEC1 & (JMP | JMA | (JCX & COND_result) | CLL)) | (EXEC2 & RTN);
90 assign ADD1 en = (EXEC1l & (JMP | JMA | (JCX & COND_result) | CLL)) | (EXEC2 & RTN);

Page 48 of 59



G. Arithmetic Logic Unit block

ALU symbol:

A

JALU er

U_top

RS1[15..C | ALU_en
Re2l15.__|Rs1[15.0]
Rd[15..C Rs2[15..0]

| Rd[15..0]

sanstf15.C |
EXEC: instr[15..0]
gtack_out| EXEC2

ALU

CLK

| stack_data[15..0]

COND mgmgggg[w..
memaddr[10..0] [

ALU_top.bdf:

alu

{__> Routl15.0

T CONLC

T memaddr{10.._

ALU e C——HIEk—— | enabl mul1[15..
Rs1M5.0  C——WRE——Rs1115.0 mul2/15.. .
Rs2[15.0 C—RRE——— Rs2115.0 Routi15. QuTPY
) INPUT . . QUTPU”
: Bd[15..0 = |‘M]E iT Rdl15.0 fum OUTPU"
inswl15.0  C——Nee™ instr(15..0 memaddri1 i
| mulresult[31..(
. NPUT
EXEC: [— :ylg:c%-r exec?2
stack datal15._——HiEH stackout[15..0
AL ir
116
INPUT [
CLK e CLOCK PRODUCT[31.0]
A[15.0]
B[15..0]
MULTIPLIEF
alu.v:
% module alu (enable, Rsl, Rs2, Rd, instr, mulresult, exec2, stackout, mull, mul2, Rout, jump, memaddr);
3 input enable; // active LOW, disables the ALU during load/store operations so that undefined behaviour does not occur
4 input signed [15:0] Rsl; // input source register 1
5 input signed [15:0] Rs2; // input source register 2
6 input signed [15:0] Rd; // input destination register
Z input [15:0] instr; // current instruction being executed
8 input signed (31:0§ mulresult; // 32-bit result from multiplier
9 input exec2; // Input from state machine to indicate when to take in result from multiplication

10 input [15:0] stackout; // input from stack to be fed back to registers

12 output reg signed [15:0] mull; // first number to be multiplied

13 output reg signed [15:0] mul2; // second number to be multiplied

14 output signed [15:0] Rout; // value to be saved to destination register

15 output jump; // tells decoder whether Jump condition is true

16 reg carry; // Internal carry register that is updated during appropriate opcodes
17 output reg [10:0] memaddr; // address to load data from / store data to RAMd

19 wire [5:0]opcode = instr[14:9]; // opcode of current instruction
[16:0] alusum; // extra bit to hold carry from operations other than Multiply
21  assign Rout = alusum [15:0];

20 reg signed

22 assign jump =

23 reg [15:0] mulextra;

25 //3ump Conditionals:
c2, 1C3, Jc4, IC5, 1C6, IC7, IC8;

26 wire 1C1, J
27 assign JC1
28 assign 1C2
29 assign 1C3
30 assign JC4
31 assign 1CS
32 assign JC6
33 assign 1C7
assign 1C8

o
0

(Rs1l < Rs2);
(Rs1 > Rs2);
Rszs;
3.

[ T ]

Page 49 of 59

(alusum[16] & ((opcode[5:2] == 4'b0000) | (opcode[5:2] == 4'b0001) | (opcode[5:2] == 4'b0010)));



92
93

always @(opcode, mulresult)
begin

if(lenable) begm
case (opcod

6’ 0&){)000: alusum = {1'bl, Rd};
6'b000001: alusum = {8' bmoumnm instr[s 01}; //ImA unconditional jump to
6'b000100: alusum = 2]:1. Rd}; // ional Jump A < B
6'b000101: alusum = {3C2, Rd}; // »al Jump A > B
6'b000110: alusum = {3C3, Rd}; // Jump A =B
6'b000111: alusum = {IC4, Rd}; // IC4 (ondu\onal Jump A = 0
6'b001000: alusum = iJcs. Rd;; // 3C5 Conditional Jump A >= B / A I<B
6'b001001: alusum = 9 itional Jump A <=B / A !> B
6'b001010: alusum = { 3 on onal Jump A != 8B
6'b001011: alusum = {JC8, Rd}; // IC8 Conditional Jump A < 0
6'b001100: alusum = il‘h 3 & Rs2}; // AND Bitwise AND
6'b001101: alusum = l'bn, Rsl I R52 // OR Bitwise OR
6'b001110: alusum = ? bo, Rs2}: // XOR Bitwise XOR
6'b001111: alusum = {1'b0, -asl) // NOT Bitwise NOT
6'b010000: alusum = {1'bu. ~Rs1 | -mg // NND Bitwise NAND
6'b010001: alusum = {1'b0, ~Rsl & ~Rs2}; // NOR Bitwise NOR
6'b010010: alusum = ?' 1 ~A // XNR B|tmse XNOR
6'b010011: alusum = {1°' hn Rsl}; / mv Move (Rd =
6'b010100: beg

alusum = (1 b0, Rs1} + {1'b0, Rs2}; // ADD Add (Rd = Rsl + Rs2)

carry = a]usum[lb
en
6'b010101:

begin
alusum = {1'b0, Rs1} + {1'b0, Rs2} + carry; // ADC Add w/ Carry (Rd =
carry = alusum[16];

en
6'b010110: begin

'/ IMP Unconditional Jump, first bit high to indicate ]Illlﬂ and passes through Rd
i

address, MSB high indicates jump, [8:0] is destination

Rsl + Rs2 + Q)

alusum = {1 b0, Rs1} + {17'b0000000C0O0000000LY; // ADO Add 1 (Rd = Rd + 1)
carry = alusum{16];
en
6'b010111: ;
6'b011000: begin
alusum = {1'b0, Rs1} - {1'b0, Rs2}; // SUB Subtract (Rd = Rsl - Rs2)

carry = a'lusum[ls
en
6'b011001: begin
alusum = (1 b0, Rs1} -
carry = a'lusumhs]
begin
alusum = {1'b0, Rs1} -
carry = a'lusull[lb],

en
6'b011011: ;

{1'b0, Rs2} + carry - {17'b00000000000000001};

en
6'b011010:

{17 'b00000000000000001}; // SBO Subtract 1 (Rd

6'b011100: begin // MuL Multiply (Rd = Rs1l * Rs2)
1f(|exec2) heg
f(Rs. (15]) begin
mull = ~Rsl + {16'h0001};
en d
else begin
mull = Rsl;
1f(R52[15]) begm
= ~Rs2 + {16'h0001};
e]se begin
mul2 = Rs2;
end
alusum = 17 'b00000000000000000;
carry = (Rs1[15]ARs2[15]) 2 1'b1 : 1'b0;

en

else begin
d{mlenra, alusum[15:0]} = (carry) ? ~mulresult + 32'h0000000L
n

end
6'hullwl begin // NLA Multiply and Add (Rd =

(4] execZ)
if (Re [15]) begin
d mull =

Rs2 + (Rd * Rs1))

~Rd + {16'h0001};

else begin
mull = Rd;

d
if(llsl[l 5]) begin
d = ~Rsl + {16'h0001};

else begin
mul2 = Rsl;

alusum = 17 'b000000000000O0000;

carry = (Rs1[15]ARs2[15]) ? 1’ b1 : 1'b0;

else begin

d(nl'le)(tra, alusum[15:01} = (carry) ? ~mulresult + 32'h00000001 + {16'h0000,

end
6" l)ﬂllllD begin // MLS Mmultiply and Subtract (Rd = Rs2 - (Rd * Rs1)[15:0])
if( execl) heg%) %

egin
~Rd + {16'h0001};
e'lse begm
mull = Rd;

end
If(Rsl[lS]) begin
= ~Rs1 + {16'h0001};

else begin
mul2 = Rsl;

end
alusull =17

carry = (Rsl[lS]M!sZ[lS]) 7 1 bl : 1'bo;

else be?
alusum = (carry) ? {1'b0, Rs2 - (~mulresult[15:0] + 16'h0001)} : {1
end

end
6'b011111: alusum = mulextra; // MRT Retrieve Multiply MSBs (Rd = MSBs)

// SBC Subtract w/ Carry (Rd = Rsl - Rs2 + C - 1)

=Rd - 1)

: mulresult;

Rs2} : mulresult + {16'h0000, Rs2};

‘b0, Rs2 - mulresult[15:0]};

6'b100000: alusum = {1'b0, RSl << lsl // LSL Logical shift Left (Rd = Rsl shifted left by value of Rs2)
6'b100001: alusum = {1'b0, RSl >> / LSR Logical shift Right
6'b100010: alusum = Rsl[lS] Rs1 >» RsZ) // ASR Arithmetic smft Right (Rd =

6'b100011: ;

(Rs1 >> Rs2[3:0]) | (Rsl << (16 - Rs2[3:0]))}; // ROR Shift Right Loop (Rd = Rsl shifted right by Rs2, but Rs1[0]
%17

(Rd = Rsl shifted rI?ht by value of R

52)
Rsl shifted right by value of Rs2, maintaining sign bit)

-> Rs1[151)
"Rs1 shifted right by Rs2, but Rs1[0] -> Carry & Carry -> Rs1[15])

6'b100100: alusum = {1'bO,
1/ 6'b100101: alusum = ({Rsl, carry} >> (Rs2 % 17)) | ({Rsl, carry} << (17 - (Rs2
/7 C shift Right Loop w/ Carry (Rd =
6'b100110: alnsuu = {1'b1, Rd}; //cLL function call
6'b100111: begin //RTN réturn'to prev ca
1f(exe:2) beq
alusum = {1'b0, stackout};
end
end
6'b101000: alusum = {1 b0, Rsl}; // PSH Push value to stack (Stack = Rsl)
6'b101001: alusum = {1'b0, stackout}; // POP Pop value from stack (Rd = Stack)
6'b101010: begin // LDR Indirect Load (Rd = Mem[nsl])
if(lexec2) begin
memaddr = Rs1[10:0];
end
end
6'b101011: begin // STR Indirect Store (Mem[Rd] = Rsl)
memaddr = Rd[10:0];
end
6'b111110: ; // NOP No operanon (Do Nothing for a cycle)
6'b111111: alusum = {1'b0, 16'h0000}; // STP Stop (Program Ends)
default: ; // During Load & Store as well as undefined opcodes
endcase;
ent
else be?in
dl usum = {1'b0, 16'h0000}; // Bring output low during Load/Store so it does not interfere
end
end
endmodule

More detail on the multiplier (mul16) is given in Appendix I.

Page 50 of 59



H. C++ code for generating .mif files

1 @/

2 Source code for generating MIF files from instructions

3 Input format: Text file with each instruction on a seperate line (see below, please follow this new lines breeak this code);
4 Cutput format: Use stdout to redirect to filename.mif or filename.txt and then convert to .mif

5 Single instruction format and example:

3 1. INSTRUCTION RD RS1 RS2 (all in capitals, seperated by whitespace (this is okay if not exact, code removes whitespace anyway),
7 BUT MUST INCLUDE R for registers)

8 example: AND R2 R4 RS

s MUL RO R4 R7

10 JMP R2

11 STP

12 For instructions that use only two registers, example MOV: MOV RO R1 (do not enter third register, just proceed to next instruction)
13 For instructions that use one register, example JMP: JMP RO (similar to before, just proceed to next instruction)

14 For insturctions that use no registers, example 3TP: STP (and just proceed to next line)

15 2. LDA/STA RN MEMORY_ LOCATION (DECIMAL) (please make sure memory location is in DECIMAL, otherwise bad things happen with the code)
1e example: LDA R3 1546

17 STA RE 905

18 L+/

15

20 i

21 IMPORTANT NOTE: For the OR instruction, enter it as "_OR", otherwise the code breaks :|(

22 -Racper

23 *

24

25 #include <iostream>

26 #include <string>

27 #include <vector>

28 #include <cassert>

25  #include <algorithm>

ao

31  using namespace std;

32

33  #define pb push_back

34

3s #define endl "\n"
36 #define IOS ios_base::sync_with_stdio(false); cin.tie (NULL);

38 const unsigned int RAM SIZE = 2048;
39 const unsigned int INSTRUCTION_LENGTH = 1
40

41 string convertBinaryToHex(string binary4) (
42 if (binary4=="0000"){(

43 return "0";

44 }else if (binaryd4=="0001"){

45 return "1";

46 }else if(binary4=="0010"){

47 return "2";

48 lelse if (binary4=="0011"){

45 return "3";

50 }else if (binary4=="0100"){

51 return "4";

52 }else if (binary4=="0101"){

53 return "5";

54 }else if (binary4=="0110"){

55 return "&";

56 lelse if (binary4=="0111"){

57 return "7";

58 lelse if (binary4=="1000"){

59 return "8";

€0 lelse if (binaryd4=="1001"){

61 return "9";

€2 lelse if (binary4=="1010"){

63 return "A";

64 }else if (binary4=="1011"){

€5 return "B";

13 jelse if (binaryd=="1100"){

&7 return "C";

(33 lelse if (binary4=="1101"){

69 return "D";

70 lelse if (binary4=="1110"){

71 return "E";

72 }else if (binary4=="1111"){

73 return "F";

T4 }else{

75 cerr << "Invalide binary quartet, cannot convert to HEX (line 78 in .cpp file)" << endl;
7€ assert(J);

77 O}

78 L}

79

80 string convertDecimalToBinary(int decimal, int digits){
81 if (decimal>2047){

82 cerr €€ "Too large memory location, we don't have that much memory for LDA/STA" << endl;
83 assert (J) ;

84 | )

13 string ans="";

86 [ while(decimal>)){

87 int rem = decimal%®;

88 ans+=to_string(rem) ;

as decimal/:

S0 I ]

91 [ while(ans.size()<digits){

92 ans+="0";

53 )

94 reverse (ans.begin(), ans.end());
95 return ans;

s L)

Page 51 of 59



97

98 string convertInstructionToHex(string binaryInstruction)(
99 string ans="";
100 string temp="";
101 if (binaryInstruction.size()!=ic)(
102 cerr <€ "Instruction needs to be exactly 16 bits long, crash in line 105" << endl;
103 assext (V) ;
104 o)
108 for (int i=(; i<i0; i++){(
106 Z temp+=binaryInstruction.at(i);
107 Af (immd || dwm? || imel] || i==15){
108 ans+=convertBinaryToHex (temp) ;
109 temp="";
110 )
111 )
112 return ans;
113 -}
114
115 string getRegisterBinary(string reg)(
116 [ if (reg.size()!=2){
117 cerr << "Invalid register format, please use form RN, example RO, R3,...; crash in line 120" << endl;
118 assert () ;
119 o
120 [ if(reg.at(l)=='0'){(
121 return "000";
122 Jelse if(reg.at(!)=='1'){
123 return "001";
124 Jelse if(reg.at(l)=='2"){(
125 return "0l
126 Jelse if (reg.at(l)=="3'){
127 return "011";
120 Jelse if(reg.at(l)=="'4'){
129 return "100";
130 Jelse if(reg.at(l)=="5")(
131 return "101";
132 Jelse if(reg.at(l)=="c'){
133 return "110";
134 Jelse if (reg.at(l)=='7"){(
135 return "111";
136 Jelse(
137 cerr €< "Unknown register input (not between 0 and 7), crash in line 140" << endl;
138 ext (V) ;
135 )
140 )
141
142 [string getInstructionHex(string instruction)(
143 string opcode = instruction.substr (0, 3);:
144 string rd = instruction.substr(3,
145 string binary;
146
147 B if ( de=="LDA" || op\ sTA") {
148 @ if (instruction.size()<¢)(
145 cerr << "Instruction format not valid, crash at line 155" << endl;
150 assert(0);
151 }
152 binary="1";
153 @ if (opcode=="LDA") {
154 binary+="0";
155 }else if (opcode=="STA"){
156 binary+="1";
157 Jelse {
158 cerr << "Unknown instruction, I think you wanted LDA or STA, crash in line 164" << endl,
159 assert () ;
160 F }
161 binary+=getRegisterBinary(zxd);
162 int 1 dd. -3 ion.size()-5;
163 binary+=convertDecimalToBinary(stoi (i ion.substr (5, leng ), 11);
164 Jelse(
165 binary="0";
166 string rsl, rs2;
167
168 if (instruction.size ()>=7) (
169 rsl = instruction.substr (5, 2);
170
171 if (instruction.size()>=5){
172 rs2 = instruction.substr(7, 2);
173 }
174 if (opcode=="IME") {
175 binary+="000000";
176 rsl="RO";
177 rs2="RO0";
178 }else if (opcode=="JC1")(
179 binary+="000100";
180 }else if (opcode=="JC2")(
181 binary+="000101";
182 }else if (opcode=="JC3")(
183 binary+="000110";
184 }else if(opcode=="JC4")({
185 binary+="000111";
186 rs2="R0O";
187 Jelse if (opcode=="1C5")(
188 binary+="001000";
189 }else if (opcode=="JCE")(
150 binary+="001001";
191 }else if (opcode=="JC7")(
192 binary+="001010";
193 }else if(opcode=="JCE")(
194 binary+="001011";
195 rs2="RO";
196 }else if(opcode=="AND")({
197 binary+="001100";
198 Jelse if (opcode=="_OR"){
199 binary+="001101";
200 }else if(opcode=="XOR") {
201 binary+="001110";
202 lelse if (opcode=="NOT")(
203 binary+="001111";
204 x82="RO";
205 }else if (opcode=="NND") {
206 binary+="010000";
207 }else if (opcode=="NOR")(
208 binary+="010001";
209 Jelse if(cpcodem="xNi")(
210 binary+="010010";

Page 52 of 59



211
212
213
214
215
216
217
218
219
220
221
222
223
224

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
250
251
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

4

21

}else if (opcode=="MOV")(
binary+="010011";
rs2="RO";

Jelse if (opcode=="ADD"){
binary+="010100";

}Jelse if (opcode=="ADC")({
binary+="010101";

}else if (opcode=="ADO"){
binary+="010110";
rs2="RO";

)Jelse if (opcode=="SUE")({
binary+="011000";

}else if (opcode=="3BC")(
binary+="011001";

}else if(opcode=="35B0"){
binary+="011010";
ra2="RO";

lelse if (opcode=="MUL"){
binary+="011100";

}lelse if{opcode=="MLA"){
binary+="011101";

lelse if (opcode=="ML3"){
binary+="011110";

}else if{opcode=="MRT"){
binary+="011111";
ral="RO";
ra2="RO";

}lelse if (opcode=="L3L"){

}else if (opcode=="LsR"){
binary+="100001";

lelse if (opcode=="ASR")|{
binary+="100010";

lelse if(opcode=="ROR"){
binary+="100100";
lelse if(opcode=="RRC"){
binary+="100101";
lelse if (opcode=="P3H")({
binary+="101000";
ral=rd;
rd="RO";
rs2="R0O";

lelse if (opcode=="FOE"){
binary+="101001";
ral="RO";
ra2="RO";

}lelse if (opcode=="LDR"}{
binary+="101010";
rs2="R0O";

}else if (opcode=="3TR"){
binary+="101011";
ra2="RO";

lelse if (opcode=="NOF")({
binary+="111110";
rd="R0";
rsl="RO";
rs2="RO";

lelse if (opcode=="3TP")({
binary+="111111";
Ed-"RO",'
ral="RO";
rs2="R0O";

lelse{
assert(0);

}

binary+=getRegisterBinary(rd);
binary+=getRegisterBinary(rsl);
binary+=getRegisterBinary(rs2);

return convertInstructionToHex (binary);

Elvoid generateMIF(vector<string> instructions){
cout << "DEPTH = " << RAM SIZE << ";"

<< endl;

cout << "WIDTH = " << INSTRUCTION_LENGTH << ";" << endl;
cout << "ADDRESS_RADIX = DEC;" << endl;

cout << "DATA_RADIX = HEX;" << endl;

cout << "CONTENT" << endl;
cout €< "BEGIN" << endl;
int i=0;

for (i; i < instructions.size(); i++){

cout €€ i €€ " : " << instructions.at(i) << ";" << endl;

cout €€ "[" €< i €< "..2047]:

cout €< "END;" << endl;

Hint main(){

108;

string temp;
vector<string> hexCodes;
while(getline(cin, temp)){

auto it = remove (temp.begin(), temp.end(),
temp.erase (it, temp.end());

if (temp.size ()>=3){

0;" << endl;

hexCodes.pb (getInstructionHex (temp)) ;

}
}
generateMIF (hexCodes) ;

RN

Page 53 of 59



I. 1 cycle multiplier block

Multiplier symbol:

ul16

- |CLOCK PRODUCT[31
A[15..0]
B[15..0]

01

MULTIPLIEF

mull6.bdf:

18
As.d | CLOCK PROD([15.0] |
BI15. NUM1(7..0]
NUM2(7..0]
T
18
AR 4
CLock =%t AlLS CLOCK PROD[15.0]
BI7 0 NUM1[7..0]
Gho NUM2(7..0]
0L
Ai15.01 e —x
Bi15.0 oAl = 00000000P2115.010000¢C
a7 03T cLoex PROD[15.0] [
Bl15. NUM1[7..0]
NUM2([7..0] 2%-200.00000P315,010000¢C |
mulf
T |cLock PROD[15.0] | g
"'Mu—m 0 NUM1(7.0]
NUM2[7..0]
7
mul8.bdf:
CIPM ADD S
: add sub

A7 C

LPM ADD S
add_sub

dataal

result

maximumj7

minimumi7¥

=

2.0

RAM

add sub

LU

266\vmid(s)

0,5[7..1
* address a[7.0: H

92017 address b[7..0]

A H

cLock |clock
LookupibaR Type: AUTC

Page 54 of 59

PRODUCTI31.C

PRODSD



J. Register Multiplexer

% moduTe mux_8x16 (s, in0, ini, in2, in3, in4, in5, in6, in7, result);
3 input [2:0]s;
4 input [15:0]1n0;
g input El) t)%!n%;
input [15:0]in2;
mux 8x1t ; input {1; n%1:n3;
t [15:0]in4;
s3[2.. -Rd[15..|: 5 Pk e
1 put [15:0]in5;
s[2..01 resultl15.0— 10 input [15:0]in6:
—1in0[15. 11 input [15:0]in7;

in1[15.
in215.
in3[15..

13 output reg [15:0]result;

15 Balways @(*) begin
=] case(s)

oo ocooo oo
e
XN

3'b000: resu]lt = 1in0;
< 3'b001: result = inl;
in4[15. 19 3'b010: resu]lt = 1in2;
i 20 3'b011: result = in3;
Ing”g 21 3'b100: resu]lt = in4;
in o 22 3'b101: result = 1nS;
. 23 3'b110: result = in6;
in7[15.. 24 3'b111: result = in7;
25 defauh result = in0;
26  endcase
- i 27 end
MUXZ 28 L

29 endmodule

K. TimeQuest timing analyser

Elle yew Nellst Comsvaints Repoes Script Toels Wdow Helg - )

W o 5]
©) s 1200mY BC Mocel Comeand it Summary of Paths
8 Show 1200my o€ Madel stk From Node To tode LounchClock  Lakch Cock  Relsionshi  Clock Skew  Deta Delay
© Fast 1200m¥ 0 Model 1 osss fam diram_ pora_sadress_reg w8 ax ax atca ooz w202
2 omo o« s regd s cu ak pars ooz 826
3 0830 ram_nsrRAMIERIynCrEmalEy. mrlm lork 1ag-pora_srdress repd LFCstacksTACK|mem[18](3]  CLx ax LAl onz2 8207
4 oses o Jockta0-poria_askdess_ Tepd UFCsIackSTACK|mem[18][3]  CLK ax aio0 ooz sz
5 um _scress_regy LFCmCKSTACmENEI] | CLK ax a0 anz Bass
& 1927 n |rem_tsiock Jag-ports_sidress_regd LFCstsckSTACK|mem[18](3]  cLx ax @00 anz2 a0
| 7 1158 cam oA Umnc.sam, Workta5-pore,ss@em o[ pomaeETACK M ax a0 ooz rans
fsgon | Fyn e i Tl o T m wm
B Tining Analzer SR g 113 rom_ sl Ity rom_bioek?ag-ports_ardeess regd UFCstackSTACK|mem[18][2] (LK ax a0 onzz 7944
= e 10 Timing 101245 ram_ sty RAMSIBNSynaMAlsprc. M, bock AS-Porta_bihess_regd. LEDSIBCKSTACKmem[18][3]  CLK ax a0 onzz 792
= 500 File List
= Repart Timing
e i et P4 P St sock 0855 Pt #1:Setup siach s 0,055
Puh Summary  Swiics  DetFath  Waveform  Eara Fner information PunSummary  Swsic DR Wavelor  Era finer information
ats Arvt pun
Tew  me W Type  Fanew Locaon F—
1 g0 0000 launch edge time 10388 e
2 wzne Iy ook parhy P u-«j—l—,—
i oo oae  some iatency
2 oo oo ' ™Er ax +
s oo om0 R K mur_xo_ e il e [T 1w
4 sl ose o cEL S OEUL XD NG Qg -
B e o m ok 2z MSKX13VIZND  RaMjoymeram companentisne, generatecyram, biocx129ickD -
i a6 omy moocoL 3 MIKXI1NIZNO o I RAMIalisyrcsamshsync clram_biock1aS-parta_sivess e
asts sas 3 viome e
[aopmpamt. A1 2w oms we 3 wecasvizue
z ams 20w cEL M mmaaviZwo

Data Required Path

o ! ! ! ! ! ! ! +—

B Upsdate Timing Netlist Toul we o RF Type  Fancut Locason
B feset Des i e e
W st operating Conditons.. 2 viam  2ms
™ Reperrs :
P s h m Lo o i = = - = - =
o rpar: semp Somrary | 4 mox 1 U _xo_y11_na
B Report Hod FeALl
4 TR 1B _X0_¥11_ N8
5 mok 1 ewcrr 6z
o B CELL 675 CucTR GE
i Bk 1 X1 ¥4 N3 STACKimem{ 12113l
0 oo FEX11_Ya N3 UsostscksTACKmeml18][1]
- 3 u 1 FOstackSTACK|memE]1%]

Tat-porta_address_regn 15 interpreted as (gec_keepers (ran_insir iR |aTEsyncram: altsyncran_component [altsyncran 321 anto_generated|ran_blocklad-porta_address o

Conscte ~wmm n |~

The top panel lists all the paths between nodes in order of least slack to most slack. In the case of
the desired clock not being achievable, the worst path is shown first and is red. The lower panels
show details about the selected path. The lower left panel shows the route and timing of the signal
and the lower right panel is a visual representation of the two clock cycles as well as the time
taken for the data to reach the end node, and when the data needs to reach the end node for the
result to be valid. In the image, the data delay is 0.855ns shorter than the data required time
resulting in the 0.855ns slack.

Page 55 of 59



L. Test Waveforms

L.1. Calculate Fibonacci numbers using recursion

Fibonacci Test (N=1)

(S Simulstion Waveform Editor - //icnasd.ce . sc.ul ki Desktop/ CPUProject/CPUPrsject - CPUPraject - [CPUPraject 2200513011727 sim i (fead-Only)] - & x
File Edit View Simulation Help (]
Wl 28 & E T 2R e A B
Master Trme Bar 09 [ ] 7o ] ponter: [s7.760s | mtervat 8776 ms | start: | | &ne [
_— vaueat | [098 20808 4B0ns 600 ns B0 1600 ns 120,04 1400 ns 160,0 o 180,008 200008 2200 240007
Ops Pes
a [x e - rrrirrrrrrrrirrrrnr e rir e e
e e 80 - - L 4> 1 1 1 1 |
W% reee mn 1
% pec o 5 —r - I I L 7T L
% e so I T O e O I S o B N 1
S e o I I T ) o == o
$oox 50 X 2 X s X s X < X z o X z
Bom s 3 X .
®om 50 o X 1
®om so Iy
§ o m so o e 2
& 50 [ i 7
I so o X 3
w0 ow 50 [ X 1
@ AoDien B0 I [ 1
% Awemy ax
B aue B0 . 1
@ > awou 800000000 | fooonHiosoaooon Py g Himooooooa)
% cow 8t 1 1
Ipy e p— | S e
B > mensddr 8100000
& 0 omibl Bccomx X
& 0 omuz eoc0000 4 0000000000101 1
& MuLres Boo0CO0OK . | fid X 1
® o 1 - . 4T .-+ T°T° > 1
% me o L1 1
% M. B0 1
% men 80 1
% me s
& R 8O 1
B me 80 1
B R BO 1
% e 5o — —
% e 00 1 1 1 1 I 1 | 1
R | Y Y v 2 v erermrmeooee 3
% 0a0000
Fibonacci Test (N=5) - this is the benchmark test from the project brief
a orm Editor - 3.cci ject/ CPUPrpect - CPUBraject - [CPUPraject 2100061310708 simved Read-Only]] - o x
Fle Ede View Smulion Help 'Y
W& 2o & E R OE TR e A %
= ] B (] o fron ] marat e = Tone[
japs 16005 s200ns 800 6400ms w00 26008 112 128u8 1atus 16us 176 19218 208 2208~
O |
e
% =
% renen
& o
W Eexec2
@ 0 e
& e
$ 0w
Iy 5 X ]  ERE RS B Y GRS 0,
0w o X ] s X 2 3 X 1 XIXZX 5 X 1 XIX 2 )
$ o
I
& 0 oRe
8w
-
%
-
Ll
-
&
L
=
Ll
=
-
]
=
£
%
-
-
-
% we (L] mnn U nn n nn U1 nn Mn
% mamae | LTI il ni ML ML nl Ml Ml | Ml Mni Ml Ml
PR T AT ] B

o%  cooooa

Page 56 of 59



Fibonacci Test (N=6)

S Simulation Waveform Editar - f/icnasl.cc ic.ac.ul/imnZ 19/ Desiaop/ CPUPraject/ CPUPraject - CPUPraject - [CPUPraject 2020061012436 sim. vl iRead-Only]] - @ X
Flle Edt View Smuation Help

WO 28 & L0 EE TR A e A 8

biaster Time Bar: (098 [ [0] %] pointer [210s nterak 2101 | stant: | Ene

lops  1600ms  3200ns  4800ns  6400ns  BODONS  SEOONE  192us 1288 44w LGS 176us  1S2us  208us  228us 24us  256us 277w ZBGus  304us  3Zus  335us  357us  d6Bus 3Bdust
Pes

b i
s m ngﬂea-aﬂﬂn-nag-en-nooane“ﬂo-nnooaanaﬂno-noa-ennn
>R o SEETITEED G S5 ST 1 5 X 1 X2 1 XX [ X 1] oz a3 X 1 N2 X3 X »
o W1 X 3 eX s W3 RO 3 ) ST 3 ) e o X & ) SRS T S ) G G AR R O 7

DD _en

AL eamy

Al
> AL sur
cono
» jumptlags
> memadn

muiz

MUL s

RO_count

#0_en

Flen

f2_en

R en

Ra_en

BS_en

#5_en

R

fl N I Mn__ i Mn___Jn
RAMd_en fll n__n M1 il ) || | | - | M I |l LTI
gimevemam—

5 Ganad o ‘nacannnnonnoaTIn
3|

WK E E E K 6 W W W W e WY

L.2. Calculate pseudo-random integers with a linear congruential generator (LCG)

Code used: Requires setting the following data memory locations:
LDA R1 @ Set location '@' to value of s;
LDA R2 1 Set location '1' to value of a;
LDA R3 2 Set location '2' to value of b;
LDA R4 3 Set location '3' to value of n;
LDA R6 4 Set location '4' to value of ©xB;
LDA R7 5 Set location '5' to value of ©x6;
JC4 R6 R4

MLA R1 R2 R3

ADD R5 R5 R1

SBO R4 R4

JMP R7 R6

STP

Test1: (s=3,a=4,b=5,n=3) Expected 387, Result 387, Took 28 cycles from start to result.

Value at
ops o ps
'

Ops 400ns  800ns 1200ns 1600ns 2000ns 2400ns 2800ns 3200ns 3600ns  4000ns 4400ns  4800ns 5200ms 5600ns 6000ns 6400ns 6800ns 720/

-

=

= oom uo

= o R uo

2 om uo

= 0 R vo

& > ops uo

& > rs uo 0 1
> m uo o 3

Page 57 of 59



Test2: (s=7,a=6,b=4,n=5) Expected 7234, Result 7234, 40 cycles from start to result

Value at loPs 80.0ns 160.0 ns 240.0ns 3200 ns 4000 ns 4800 ns 560.0ns 640.0ns 7200ns 800.0 ns 8800ns 960.0 ns 104

[*
me ops ops

> instr H000D }(80)(00)(B0) 0000 )0} XA BN R As U XA e DA G ORS00 €00

Rl vo o 7 46 280 1884 10108 60652

3 uo P 4 P
> R4 vo [ GRS T ST I G g

> RS vo o K48 326 {2010 12118 X 7238

WEOWE WL WE WL W W W

Test3: (s=4,a=2,b=50,n=9) Expected 54738, Result 54738, 64 cycles from start to result.

. Valueat | PPS 800 ns 1600 ns 2400 3200 s 200005 4800 5600 n5 620005 720005 800,005 880,005 960,015 108us 11208
- ops ps
B CK BO | 1 1 I |
& > instr HOoOD O O TN OO R CHB NE NP B OKCNB ERCH A HE BN CORE e N EH 7£00
¥ 0 om vo ) a SR GITID GETIN T 13774 27598
& R vo o, X 2
¥ vo o X 50
&R vo o 9 s X7 ¥ & « s e o
& 0 Rrs uo [ 58 W 224 X 606 3098 6504, X 13366 X_27140 54738
& > re ve o X N
& e va o )4 3
L.3. Traverse a linked list to find an item
The following waveform shows traversal of a linked list to find the value 5.
& ehorm Editor - 3.cris PUProject/CPUProject - CPUPraject - [CPUProject 2000061213403, sim.vaf (Read-Only)| - o x
Fle Ear Vew Smuson telp ——
WO 2 8 K B OE T 00 R A e 2
e ove i i P = N eraure —| -
o | o - e v o~ . o oo i - P
E(’r“ L1
R 50
e
yrry T

Jumpdtage 800111100

memaddr 800000CC.

muh Beuooo

mulz BRGO

men 80
Rin 80

Fien B0
R B0
B e BO
B B0
Ren B0

EEEEEEEEEEENENGEE N EEECEEEENEERE e ev Yy

0% coseoo

Page 58 of 59



M. Resource utilisation report

& Compiation Repore -
Flle Edt Took Window Help

e of Contents L
B8 Fiow summay ~
B Flow Setings Compilztion erarchy Node LogeCels  DacatediogicAegisters  Ofsgisters  MemorySits  M9Ks  DSPElemenst  DSP9xd  DSPIGN®  Pine  WimulPmr  LUT-Onlyics  RegisterOniylCe  LUT/RegisteriCs
B Flaw Non-Detault Global Sstings ||| v |cpUBroject 3200 666 101 Ll 73728 13 ) 0 L) o0 25461) e 39500 ICFUBroj
P Flaw Elapsed Time i |ADD_1:ADDT] 808 1] ol © 0 o 0 0 0] 0 jlv} o RETE) ICPuPr
B Flow 05 Summary G|~ pwspan S Py ™ 197 A o o o o o 1057 (0) o 1o p—
Flow Log 1 ~ jaAL ) se7nzr om om © o o o o ) see0zie om 1m IcPer
» 1 Analyis & Symihesis 1 ¥ Jipm_divideModa) 288000 it oiol L] o L] o o a o EL ol oiol IcPuProp
v Fme 1 ¥ llpm,_dvide_vosauto,_gererated] 28810) om oo o 0 ) o 0 e 0 268101 om o ICPUPrze
BB summary [ * ats_dvides_ng divider] mees  om om 3 o [ o o o 0 main) om o) IcPUe
ES settings 1 Jalt_u_dw_c7tdivider) @l om 0@ o ] ° ] o a o 2354238 o) om IEFPro
B racliel compilation 2 Iipm _abs_ia:my_abs_num] 7em ol o) ° ° ° o ° o 0 270m om ol ICPUProje
M ncrementl Compilation Secti||» It TPLER] m o oio) o2 4 ° o o o © 01 10} o o icPuere
& Ar-CutFlle 3 IDECODE DECODE] 83183) o ol ° ° 0 0 o 0 76061 o m ICPUPromm
v I Recource Sectian 4 JUFOstack STACK] 00 5360536 o) ° ] ° o o e 0 RG] 242 242) 294 1204) IcPuere
B Besource Ussge Summary |5 [SM_ppetinestsm] 3@ 2 ol ° o ° o [ @ o 1 o) ziz1 fcPuprog
B parotion stassties B [ro——r— 1610 om om ] 0 o 0 0 o ) o om ALl IcPuProp
B gt Pins. 7 s MUXS| ne ol ol o L] ° o o L] o M@ om om JcPUProp
= ousputine s usmu HxE| 1k o oo ° o [ o o ER) i) o) s IcPUProe
I o Purpase snd pedicans || ma_Setepux1] w0068 om L ° o o o o e 0 127021 om 30m IcPero
B 110 pank Usage 10 e Be1E Rz 1800160 OO oo o ) ) 0 ) o ) 180 (160 oo ool ICRUPrce
BB all package Pine n mu_Bx1Ebunc3) a0 oW o0 o o ° 0 ] o 0 147147 0w o KPP
> I 10 standards Section 12 [Ip—— o) o ool 2788 4 0 o o e o o) o oie Icrueroge
B2 Resource Ublizstion by £ || 13 [Emp—— 0w om om 2258 s o o o o o o om om IcPueron
Dy Chain Sumemary 4 reg_ = RES| e 20 i ® 1] [ [} [ e o i) 2800 sl IeRB
BB Pad To Core Detay Chain
[ p—
B Global & Other Fast Sigral
B mam ummary
* I Logical Memanies
» I Logic and Rouing Section
B /0 Rules Section
BB Device Optiens.
== Gperating Seings and Cand
B Ectimated Delay Added for Ho
O Messages
O suppressed Messages
O Flowsssages
O Flow Suppressed Messages
» I ascembler
~ 7 Tening Analyzer
BB summary
B8 araled Campil
B soc ile st < u
BB Clocks L the rumbers in P y alune. The numbers e e P v sttt in the
9 Siow 1200my 85 Model || hierarchy.

100%  oo0o17

The image above is the resource utilisation of the Pipelined CPU before the RRC instruction was
removed. Within the ‘ALU_top’ instance, there is a Jpm_divide block which adds a significant
resource use to the ALU without adding much functionality. The image below shows the

resulting report where the utilisation is much lower.

& Compiastion Repor - i cject/CPUPraject - CPUPreject - 8
Flle Edt Took Window Help

ble of Cantents ie

BB Flow summany

B Flow setsngs Compilation rerarchy Node LogicCells  Dechcated LogicRngisters /O fegisters  Memory@its  M9Ks  DSPlements  DSPOxd  DSPIONI8 Pz VimalPms  LUT-Onlyls  Register-OniyLCs  LUT/Register LCs
B Fiow o Defaul Global settings (|1 v |cPuProject EL U o 73728 i 15 a20m El) 901 ICPProje
P Flaw Etapiect Time 1 JADD_1:4D01] si18) o) oio) o no o) st IeruProe
B Flow 05 Summary 2~ puusopau 1ws0l om ol 192 ra37 o) o i fcPereny
Flowlog 1 alu AL ] M o sl ® M6 O 1t IR
> I Analysis & Symthesis Il TPLER] mwm ot il ms2 01101 o ot IcPuera
~ P e | ECODE DECaDE| o197 om L o2 om 915 IcPUB
B8 summary JUFOstackcsTACK] 76676 536 (836} o 140 {140 241 2a1} 228 225} ICPURr
ES settings |SM_pipelined M| 3@ 26 oiol 1 oloy 2021 ICPUPraie
B paralel campilaion busmu MUKE| 160 o o0 op om 6 IcPuProje
I incremental Compiaion St [F—— I, om om o om o JCPUPre
- An-CutFile Jbusrmiss MUXS] 1Nl om o0 (1] o 2100 ICPUProje
¥ 7 Recource Sectian mux_wtpaui] sones o 0io) 2rhen o) B IcPuProje
B Resource Usage Summary | |10 Jmax_a1epanc] w060l oio) oio) 153159 oioy m IcPuereye
B Parttion Statstics " [T sersm o 00 14811481 ol i IR
B input Pirs 12 |ram_dataRamd| ol oio) oiol 22768 L] ol ol IcPuProp
B2 outputns 1 ram_strRAM| o) cm oo 3z7se 1) om o) IcPUe
B oo Purpose snd Dedicans |44 - 2@ 20 g0 o0 © am 2l o icRro
B 110 Bark Usage
B8 il Package Pins.
B 0 standards Section
EE Resource Ubiization by £
B Dy Chain Sumemary
B Pac To Core Delay Chain £
BE Contrel Signals
B Global & Other Fast Sigral
B fam ummary
+ B Logical Memonies
» M Logic and Routing Section
M 0 Rules Sectian
B8 Device Optiens.
= Gperating Settings and Candit
B Ectimated Delay Added for Ho

cseocaseee
cecoeosocaseececes o s
ccocooocacesoo0os o

0 Hessages
O suppressed Messsges
O Flowsessages
O Flow Suppressed Messages
» I aszembler
~ I Timing Analyasr
BB summary
B9 acalisd Campilation
BB 50C File Lt < >
98 Clocks . the rumbers in P y T bers gven e e y sub-antites i the
I Sl 1200mY 85C Hodel || hiearchy.

100% 00218

Page 59 of 59



	1. Introduction
	2. Problem definition
	2.1. Project outline
	2.2. Project specification

	3. Project planning and management
	3.1. Project aims and milestones
	3.2. Team roles
	3.3. Communication
	3.4. Planning

	4. Project timeline
	5. Design process
	5.1. Overview of the CPU
	5.2. Instruction set
	5.2.1. Overview and initial ideas
	5.2.2. Load/store operations
	5.2.3. Arithmetic operations
	5.2.4. Logical operations
	5.2.5. Shift operations
	5.2.6. Jump operations
	5.2.7. Stack operations
	5.2.8. Other operations

	5.3. State machine
	5.4. Instruction memory unit
	5.5. Data memory unit
	5.6. Register file
	5.7. Add 1 logic block
	5.8. Decoder
	5.9. Arithmetic logic unit (ALU)
	5.10. Multiplier
	5.10.1. Initial ideas
	5.10.2. Lookup table and Karatsuba’s algorithm
	5.10.2. Final implementation and verification

	5.11. Stack
	5.12. Multiplexers

	6. Final analysis of design
	6.1. Benchmark tests
	6.2. Maximum clock frequency tests
	6.3. FPGA area and utilisation tests
	6.4. Power analysis tests

	7. Reflection
	7.1 Project success
	7.2 Future work
	7.3 Final thoughts

	8. Bibliography
	9. Appendix
	A. C++ test codes
	A.1. Calculate Fibonacci numbers using recursion
	A.2. Calculate pseudo-random integers with a linear congruential generator (LCG)
	A.3. Traverse a linked list to find an item

	B. Freehand ISA map
	C. Complete Block Diagram File
	D. ASR, ROR and RRC explained
	E. CLL and RTN explained
	F. Decoder block
	G. Arithmetic Logic Unit block
	H. C++ code for generating .mif files
	I. 1 cycle multiplier block
	J. Register Multiplexer
	K. TimeQuest timing analyser
	L. Test Waveforms
	L.1. Calculate Fibonacci numbers using recursion
	L.2. Calculate pseudo-random integers with a linear congruential generator (LCG)
	L.3. Traverse a linked list to find an item

	M. Resource utilisation report


