

CPU Project Report
Aadi Desai, Benjamin Ramhorst, Kacper Neumann

ELEC40006 – Electronics Design Project 1 2019-2020

Dr Edward Stott, Mrs Esther Perea

Imperial College London

Submission date: Sunday, 14th June 2020

Real word count: ~10,862

Page 2 of 59

TABLE OF CONTENTS

1. INTRODUCTION .. 4

2. PROBLEM DEFINITION .. 5

2.1. PROJECT OUTLINE .. 5
2.2. PROJECT SPECIFICATION ... 6

3. PROJECT PLANNING AND MANAGEMENT ... 8

3.1. PROJECT AIMS AND MILESTONES ... 8
3.2. TEAM ROLES .. 9
3.3. COMMUNICATION .. 10
3.4. PLANNING ... 10

4. PROJECT TIMELINE ...14

5. DESIGN PROCESS..20

5.1. OVERVIEW OF THE CPU ... 20
5.2. INSTRUCTION SET .. 21

5.2.1. Overview and initial ideas.. 21
5.2.2. Load/store operations ... 22
5.2.3. Arithmetic operations .. 23
5.2.4. Logical operations .. 24
5.2.5. Shift operations ... 24
5.2.6. Jump operations .. 25
5.2.7. Stack operations ... 26
5.2.8. Other operations ... 27

5.3. STATE MACHINE .. 28
5.4. INSTRUCTION MEMORY UNIT .. 29
5.5. DATA MEMORY UNIT ... 29
5.6. REGISTER FILE ... 30
5.7. ADD 1 LOGIC BLOCK .. 30
5.8. DECODER... 30
5.9. ARITHMETIC LOGIC UNIT (ALU) .. 31
5.10. MULTIPLIER ... 32

5.10.1. Initial ideas ... 32
5.10.2. Lookup table and Karatsuba’s algorithm ... 33
5.10.2. Final implementation and verification .. 34

5.11. STACK.. 34
5.12. MULTIPLEXERS ... 35

6. FINAL ANALYSIS OF DESIGN ..36

6.1. BENCHMARK TESTS ... 36
6.2. MAXIMUM CLOCK FREQUENCY TESTS .. 36
6.3. FPGA AREA AND UTILISATION TESTS.. 37
6.4. POWER ANALYSIS TESTS .. 38

7. REFLECTION ..39

7.1 PROJECT SUCCESS ... 39
7.2 FUTURE WORK .. 40
7.3 FINAL THOUGHTS ... 40

Page 3 of 59

8. BIBLIOGRAPHY ...41

9. APPENDIX ...42

A. C++ TEST CODES ... 42
A.1. Calculate Fibonacci numbers using recursion ... 42
A.2. Calculate pseudo-random integers with a linear congruential generator (LCG).................................. 43
A.3. Traverse a linked list to find an item.. 44

B. FREEHAND ISA MAP ... 45
C. COMPLETE BLOCK DIAGRAM FILE ... 46
D. ASR, ROR AND RRC EXPLAINED .. 47
E. CLL AND RTN EXPLAINED .. 47
F. DECODER BLOCK ... 48
G. ARITHMETIC LOGIC UNIT BLOCK ... 49
H. C++ CODE FOR GENERATING .MIF FILES ... 51
I. 1 CYCLE MULTIPLIER BLOCK .. 54
J. REGISTER MULTIPLEXER .. 55
K. TIMEQUEST TIMING ANALYSER ... 55
L. TEST WAVEFORMS.. 56

L.1. Calculate Fibonacci numbers using recursion ... 56
L.2. Calculate pseudo-random integers with a linear congruential generator (LCG) 57
L.3. Traverse a linked list to find an item .. 58

M. RESOURCE UTILISATION REPORT .. 59

Page 4 of 59

1. Introduction

A Central Processing Unit (CPU) is at the backbone of electronic engineering and computing. State

of the art CPUs are capable of performing many different operations at very high speeds. There

are many different CPU implementations, ranging from basic to very specialised, but the most

commonly used CPUs are found in desktop computers and mobiles phones. We chose a project

through which we would design our own CPU, since this involves both creativity, to ensure a wide

range of capabilities, as well as technical and analytical skills, to ensure correctness and efficiency.

Furthermore, we thought this project would give us some insight into how a modern computer

works.

The project aim was to build a CPU capable of performing a wide range of operations, such as

arithmetic, logic and memory operations. The final design was based on several modern CPU

architectures and mathematical algorithms to ensure correctness and maximise efficiency.

This report describes our project. The report starts with a detailed set of requirements for the

final CPU. The next two sections describe planning, teamwork and project progression. Finally,

the last three sections describe the final design, alongside a critical analysis and a reflection on

the overall project.

Page 5 of 59

2. Problem definition

2.1. Project outline

The following section describes the project outline – technical problem definition, team

members, project length and some constraints and requirements.

Project title: Design of a general-purpose CPU

Project description: The main goal of this project is to build a general-purpose CPU, capable of

performing a wide range of operations including arithmetic operations such as addition,

subtraction and multiplication; logic operations such as bitwise operations and conditionals;

memory operations such as load and store. The CPU should be tested with a wide range of

mathematical functions and programming algorithms, including but not limited to calculating a

Fibonacci number, generating pseudo-random numbers, and traversing a linked list. The CPU is

expected to complete these operations efficiently and correctly, using only built-in hardware and

instructions.

Team members: Aadi Desai, Benjamin Ramhorst and Kacper Neumann.

Project length: Five weeks, starting from 11th May with a submission deadline set for 14th June.

Project budget: No set budget.

Technologies used: The CPU should be designed and tested using simulation tools and

hardware-design languages. The required software for this project is Quartus Prime. For testing,

programming languages such as C++ or bash can be used to automate specific tasks. There are no

set requirements for communication services, but it is highly recommended to use some form of

version control, preferably GitHub, for sharing project files. It is not required to build the final

circuit; project files will suffice.

Page 6 of 59

Technical requirements and constraints:

 The instruction length must be 16 bits, but the minimum number of instructions is not

set.

 Efficient multiplication must be built-into the CPU.

 The CPU must have enough memory to store 2K words of data and 2K words of

instructions, each word being 16 bits long.

 The CPU must have a stack, but there are no other hardware requirements.

 The CPU should minimise power consumption.

 The CPU should have a low geometric mean time of executing the given testbench tasks.

Verification: The CPU should be tested with three algorithms, as described below. It must

produce correct results, but also be efficient, both in terms of power and speed. The algorithms

used for testing should be:

1. Calculating the nth Fibonacci number using recursion.

2. Calculating pseudo-random integers.

3. Traversing a linked list of integers and searching for a specific element in the list.

The source code for these algorithms can be found in Appendix A.

2.2. Project specification

The following section describes the project specification, which was used to verify the final

design. The specification used for this project was based on the Software Requirements

Specification (SRS). We decided to use SRS, rather than Product Design Specification (PDS) since

the project will be completed using simulation tools. Some features from a PDS, such as shipping,

packing, and manufacturing facilities do not apply to this project. Furthermore, a PDS is more

useful when the project is built using physical components since the PDS document includes

features such as weight, materials, and shelf storage. Finally, a PDS includes features such as legal,

political, and social implications, which would require significant market research. The main

drawback of SRS is the lack of user interface requirements for this project. Based on the initial

project specification and the project outline, the following functional and non-functional

requirements were set for this project:

Page 7 of 59

Functional requirements:

• The CPU must have a 16-bit instruction length.

• The CPU must have enough memory to store 2K, 16-bit words of data and instructions,

each.

• The CPU must be able to perform the following arithmetic instructions:

o Addition

o Multiplication

• The CPU must be able to perform frequent comparisons, such as equal, greater than (or

equal) and less than (or equal).

• The CPU must have a stack.

Non-functional requirements:

• No instruction should take longer than three cycles.

• The CPU must be pipelined to improve performance.

• The maximum clock frequency should be at least 100 MHz at 0 degrees Celsius.

• The CPU dynamic power consumption should not be above 50 mW.

Page 8 of 59

3. Project planning and management

3.1. Project aims and milestones

Based on the project specification, the following aims were set. These aims were later used to

verify the final project and the overall functionality and performance of the CPU.

1. Design a CPU capable of performing a wide range of basic instructions (arithmetic, logic,

jumps, load/store), with a 16-bit instruction length and enough memory for 2K of

instructions and data each. Avoid creating very specialised instructions, such as an

instruction for calculating a Fibonacci number or a pseudo-random number, unless

necessary.

2. The CPU should be able to perform both arithmetic instructions (addition, subtraction,

and multiplication) as well as bitwise logical operations, such as AND, OR, NOT, XOR etc.

Division and modular arithmetic are not required, but an efficient implementation of

multiplication is. Multiplication must not be implemented using the multiply

megafunctions or the Verilog multiply operator.

3. The CPU must have at least four registers to enable work with more data concurrently.

Preferably eight, if instruction length allows.

4. The instruction set architecture (ISA) should support a wide range of jumps, due to many

different conditionals used in modern programming languages.

5. Implement a last-in-first-out (LIFO) buffer to be used as a stack. This can be done using

Verilog or block diagrams.

6. Make the CPU as power-efficient as possible, mainly through minimising the number of

components.

7. Pipeline the CPU to make it more efficient.

8. Optional: Create a program for generating .mif files from instructions. This will make

converting instructions to hexadecimal easier and speed up testing.

9. Optional: Create a program for simulating the CPU based on the instructions. This is

unlikely to be completed, as it requires quite a bit of work and is not necessary as most

instructions can be tested quite quickly by hand simulation.

From the above aims, a list of milestones was created to make sure we were on the right track

and completed the project on time:

1. Create the basic project and enable collaboration through GitHub.

2. Design a suitable instruction set with corresponding opcodes and meanings.

3. Design a basic CPU with a control and data path and multiple registers.

Page 9 of 59

4. Implement an arithmetic-logic unit (ALU) with the functionality described above. The

ALU should be able to perform both logic and arithmetic, but not multiplication.

Multiplication needs to be implemented separately.

5. Implement a multiplier and test it independently from the rest of the CPU.

6. Implement a stack.

7. Test with the required tests (Fibonacci, number generator and linked list).

8. Pipeline the CPU and complete the project.

3.2. Team roles

In the following section, the role of each team member is described, alongside some overall team

responsibilities. The team consists of three first-year Electrical and Electronic Engineering

students: Aadi Desai, Benjamin Ramhorst and Kacper Neumann. This role split was done based

on the project requirements as well as individual skills, such as Verilog coding, git usage, report

writing etc. Some of these changed as the project progressed.

Aadi Desai (Belbin roles – Implementer and Monitor evaluator): Aadi has a good understanding

of Verilog, so he worked on the ALU and the stack. These blocks were implemented in Verilog to

avoid large block schematics which are hard to debug. Furthermore, Aadi was responsible for

setting up and maintaining collaboration and version control of project files via GitHub, as well

as organising and updating the instruction set.

Benjamin Ramhorst (Belbin roles – Implementer and Completer finisher): Benjamin

implemented the multiplier circuits and worked on C++ programs to simplify testing. He also

acted as the overall report editor, keeping detailed track of sources used and the project

progression.

Kacper Neumann (Belbin roles – Implementer and Completer finisher): Kacper implemented

the overall CPU, having designed the decoder and the data and control path. Kacper also acted as

the overall project manager, keeping detailed track of meeting schedules, pending tasks and

current progress.

Every team member also researched different CPU architectures and possible implementations

of a multiplier and a stack during the early stages of the project. The final instruction set was

agreed on collectively after researching different ISAs. Finally, every team member was required

to work on sections of this project report for parts they implemented.

Page 10 of 59

3.3. Communication

For communication and file sharing, we used a wide range of tools and services, as outlined

below:

• WhatsApp – Used for planning meetings and asking questions. Also used for posting

updates that do not require immediate phone calls or large files.

• Microsoft Teams – Used for scheduling meetings and sharing files to be edited collectively.

This service also supports drawing and resource sharing in real-time, which was used

while creating the instruction or the CPU design.

• OneDrive – Used for sharing larger files and backup.

• GitHub – Used for sharing technical files, such as block schematics or C++ and Verilog

code.

3.4. Planning

Based on the previously mentioned requirements and team roles, the project was broken down

into stages, each of which is described below. The project started on 11th May and needed to be

submitted by 14th June. Detailed meeting structures and project progression can be seen in the

following section.

1. Initial research and project setup (to be completed by 19th May):

 Two meetings were allocated for this stage, which occurred on 12th May and 16th May.

 Understand the specification and make an initial plan.

 Start a new Quartus project and enable collaboration though GitHub, OneDrive and

Microsoft Teams.

 Research modern CPU architectures, their advantages and drawbacks.

2. Conceptual designs (to be completed by 22nd May):

 One meeting was allocated for this stage, which took place on 20th May.

 Decide on the instruction set and CPU capabilities.

 Design a basic CPU, consisting of a control and data path, multiple registers and an

ALU. No work in Quartus is required during this stage.

 Research possible implementations of multipliers and stacks.

3. Design of individual parts (to be completed by 2nd June):

 Three meetings were allocated for this stage, which occurred on 24th May, 26th May

and 31st May.

 Implement the control and data paths in Quartus.

 Implement the ALU using Verilog.

 Implement and test the multiplier.

Page 11 of 59

 Implement a stack, either with Verilog or block schematics.

 Write programs for converting assembly code into hexadecimal instructions.

 Write documentation for individual parts - to be used in the final report.

4. Initial testing and integration of various parts (to be completed by 6th June):

 One meeting was allocated for this stage, which took place on 4th June.

 Start writing a draft of the report.

 Integrate the various parts (ALU, multiplier, stack) with the overall CPU.

 Start basic testing by checking individual instructions. Testing the three algorithms

outlined by the specification is not required during this stage. However, the three

source codes (provided in Appendix A) need to be translated to assembly code.

5. Testing and optimisation (to be completed by 12th June):

 Five meetings were allocated for this stage, which occurred on 8th June, 9th June, 10th

June, 11th June and 12th June.

 Fix any bugs and incorrect instructions.

 Pipeline the CPU.

 Test with the required algorithms.

 Remove any unnecessary components and reduce power consumption.

 Finish writing a draft of the report.

6. Submission (to be completed by 14th June):

 Two meetings were set for this stage, which occurred on 13th June and 14th June.

 Fix any remaining bugs.

 Complete the final report and create a video showcasing the CPU.

This plan can be summarised with the following table (Fig. 3.4a), which can further be used to

develop a Gantt chart, as shown in Fig. 3.4b. The table shows each activity, alongside the stage

during which the activity occurs and how long each stage should last, as set out in the plan.

Fig. 3.4a: Task summary

Page 12 of 59

Activity networks are another useful way of visualising project plans. The table shown in Fig. 3.4a

was adjusted to include task dependencies and the expected duration of each task, rather than

overall stage duration. Furthermore, the table includes the earliest day a task can start, based on

previous tasks, as well as the latest day a task can be completed, as defined in the project plan.

The adjusted table can be seen in Fig. 3.4c and the activity network is shown in Fig. 3.4d. The

network consists of connected boxes; each box represents a single task. The values within each

box are the earliest start day, expected duration and latest end day, from left to right.

Fig. 3.4b: Gantt chart

Fig. 3.4.c: Activity network table

Page 13 of 59

This network is useful for visualising dependencies between various parts of the project.

However, the earliest start dates can be misleading: some tasks such as tasks D through I need to

be implemented concurrently, which would increase the duration of each task. Therefore, while

unlikely, it is possible to start initial testing and overall CPU integration (activity J) by the 13th

day.

Fig. 3.4.d: Activity network

Page 14 of 59

4. Project timeline

The following section describes the project progression, including meeting descriptions, tasks

assigned to each team member, progress and any problems encountered along the way.

First meeting (12th May):

• Understand the specification, discuss future meetings, deadlines and team roles.

• We agreed on collaboration methods (described in the previous section), but GitHub was

still not set up.

• The main goal before the next meeting was to research different ISAs and possible

implementations of a multiplier.

• Every team member needed to set up Quartus by the next meeting.

• Next meeting was set for 16th May at 2 pm BST.

Second meeting (16th May):

• GitHub was still not set up due to issues with collaboration using Quartus; this needed to

be completed as soon as possible.

• We decided to use separate memory units for instructions and data, based on the Harvard

architecture, as it would make debugging easier and reduce power consumption.

• A possible implementation of multiplication was found – an array multiplier, built using

partial products which are shifted and added. This was an acceptable approach at the time

but was later replaced with a more elegant design (for details see subsection 5.10.

‘Multiplier’).

• Before the next meeting, each of the team members needed to read about the following

topics:

o Benjamin – AVR architecture, research implementations of a multiplication.

o Aadi – SPARC and MIPS instruction set architecture, collaboration with Quartus

files through GitHub.

o Kacper – ARM architecture, pseudo-random number generator, brainstorm the

initial design of the CPU.

• Next meeting was set for 20th May at 5 pm BST.

Page 15 of 59

Third meeting (20th May):

• Aadi created a GitHub repository and added Benjamin and Kacper to it.

• Belbin roles needed to be completed by 20th May.

• The instruction set was finalised (see subsection 5.2. ‘Instruction set’):

o To allow working with more data, as described in project aims, eight registers

would be used in the final CPU.

o Two separate memory units would be used, as discussed in the previous meeting.

o For non-memory instructions:

 MSB is always 0, to distinguish from memory operations.

 The following 6 bits determine the opcode of the given instruction.

 The last 9 bits determine the three registers required for that instruction

– 3 bits for each of the registers, those being the destination register and

two source registers.

 Note: this was later amended to include an indirect load and store

instruction (see subsection 5.2. ‘Load/store operations’).

o For memory instructions:

 MSB is always 1, to distinguish from non-memory operations.

 The next bit is used to distinguish between load and store, the only two

possible instructions in this category.

 The next 3 bits determine the register from which data is read or to which

data is written

 The next 11 bits are used for determining the memory location needed for

this operation.

• Tasks to be completed before the next meeting:

o Benjamin – further investigate possible implementations of multiplication

circuits.

o Aadi – document the instruction set with a description of each instruction and

their opcodes.

o Kacper – design the initial CPU.

• Next meeting was set for 24th May at 3 pm BST.

Page 16 of 59

Fourth Meeting (24th May):

• Kacper finalised the initial CPU design.

• The instruction set was completed with preliminary documentation available in a

Freehand diagram (included in Appendix B).

• Tasks to be completed before the next meeting:

o Benjamin – implement and test the multiplier circuit.

o Aadi – finish documenting the ISA and start working on the ALU.

o Kacper – translate the initial design from the diagram into Quartus and ensure the

control path works without the ALU and multiplier.

• Next meeting was set for 26th May at 3 pm BST.

Fifth meeting (26th May):

• Benjamin read about the multiplier: a possible implementation was through the use of

lookup tables.

• Aadi implemented the ALU; however, it still needed to be integrated with the multiplier

block.

• Initial CPU was almost implemented; the control path still needed some work.

• Tasks to be completed before the next meeting:

o Benjamin – finish implementing the multiplier circuit, investigate possible

implementations of a stack.

o Aadi – finish the ALU, investigate possible implementations of a stack.

o Kacper – finish implementing the control path, investigate possible

implementations of a stack.

• Next meeting was set for 31st May at 4:30 pm BST.

Sixth Meeting (31st May):

• Multiplier was implemented.

• Started thinking about improving efficiency, mainly through pipelining.

• With the current instruction set, linked list traversal would take five cycles per item,

provided the CPU is pipelined. We needed to investigate possible alternatives.

• Tasks to be completed before the next meeting:

o Kacper – adjust the state machine to account for instructions that take three

cycles, incorporate the ALU with the rest of the CPU, write a draft report for the

decoder, state machine and the overall CPU.

Page 17 of 59

o Aadi – cooperate with Benjamin to finish the ALU and integrate it with the

multiplier block, write a draft report of the ALU and start working on the stack.

o Benjamin – cooperate with Aadi to finish ALU and integrate it with the multiplier

block and write a draft report of the multiplier.

o Everyone – brainstorm ideas for optimising the linked list.

• Started writing a draft version of the report.

• Next meeting was set for 4th June at 4:30 pm BST.

Seventh Meeting (4th June):

• The stack still needed to be implemented, implementations using Verilog were

considered.

• Multiply block and ALU were completed and integrated but not tested.

• Benjamin created an assembly to MIF generator, written in C++.

• Tasks to be completed before the next meeting:

o Benjamin – edit the report, translate pseudo-random generator source code into

assembly code, figure out the shortest clock period of the design.

o Kacper – edit the report, translate the linked list and Fibonacci source code into

assembly, modify the decoder to integrate stack operations.

o Aadi – implement and document the stack, start analysis for component power

consumption.

• Next meeting was set for 7th June at 4:30 pm BST.

Eighth meeting (8th June):

• Kacper started testing the CPU. Multiplication did not work when integrated with the rest

of the CPU, but it worked as a separate block.

• Benjamin completed the following parts of the draft: project management and

progression.

• Aadi implemented the stack.

• Tasks to be completed before the next meeting:

o Kacper – finish technical documentation and send it to Benjamin by June 8th,

debug and test the rest of the CPU instructions, excluding multiplication.

o Benjamin – finalise the draft, send it to Mrs Perea, and work on fixing the ALU-

multiplier integration bugs.

o Aadi – document the stack, debug the other instructions and work on fixing the

ALU-multiplier integration bugs.

• Next meetings were set for 9th June at 4:30 pm BST and 10th June at 4 pm BST.

Page 18 of 59

Ninth Meeting (9th June):

• Aadi was still trying to fix the multiplier block.

• Kacper tested the rest of the CPU. All the instructions were functional, except for

multiplier commands.

• Tasks to be completed before the next meeting:

o Kacper – document the ISA, apply fixes to the test code.

o Benjamin – ensure the ALU and multiplier are fully functional.

o Aadi – ensure the ALU and multiplier are fully functional.

• Next meeting was set for 10th June at 4 pm BST.

Tenth Meeting (10th June):

• Aadi managed to test the CPU, including the multiplier. Everything worked.

• The next stage was pipelining the CPU to increase speed.

• Benjamin started translating the C++ test codes into instructions executable by the CPU.

• The team started brainstorming ideas for the video and how to structure it.

• Indirect addressing was added as it is needed for traversing a linked list. This error was

not spotted earlier, but the ISA is versatile and there were lots of opcodes left, so having

to add a new instruction was not a significant setback.

• Tasks to be completed before the next meeting:

o Kacper – pipeline the CPU and document it.

o Ben – finish translating the C++ code into assembly code.

o Aadi – plan out the video.

• Next meeting was set for 11th June at 4 pm BST.

Eleventh Meeting (11th June):

• Kacper pipelined and almost completed the CPU.

• Ben finished translating the C++ code into instructions executable by the CPU.

• Tasks to be completed before the next meeting:

o Kacper – test the CPU with the translated C++ tests.

o Benjamin– write the report introduction.

o Aadi – test the CPU with the translated C++ tests.

• Next meeting was set for 12th June at 4 pm BST.

Page 19 of 59

Twelfth and Last Meeting (12th June):

• Kacper added a JMA instruction for immediate jumps to a given address. This eliminated

the need to use a load operation before a jump but is limited to addresses up to 0x1FF.

• Kacper added the CLL and RTN instructions to ease the implementation of the Fibonacci

test code.

• Tasks to be completed before the next meeting:

o Benjamin – test the pipelined CPU with the random number generator algorithm,

work on translating the Fibonacci code and write an introduction and conclusion,

perform final edits of the report.

o Kacper – test the pipelined CPU with the linked list code, work on translating the

Fibonacci code, plan, record and upload the video.

o Aadi – finish analysing the CPU performance and work on the Appendix, perform

final edits of the report.

• Submission and final edits were coordinated informally and not documented.

Page 20 of 59

5. Design process

5.1. Overview of the CPU

The final design was based on multiple architectures. After researching ARM, MIPS, SPARC and

AVR, we chose to include the following in our design:

• General features of a RISC machine.

• An ARMv8 load/store architecture and some instructions from this architecture such as

multiply and add/subtract (MLA/MLS), no operation (NOP) and various shifts (ROR and

RRC) [1].

• Splitting instructions into different formats, like the MIPS architecture [2]; for our design,

this meant splitting instructions into two categories, memory and non-memory

operations (see subsection 5.2. ‘Instruction set’).

The main goal of this approach was to make each instruction take as few cycles as possible, ideally

just one, while avoiding any specific instructions, such as an instruction for calculating the nth

Fibonacci number. The diagram in Fig 5.1 shows a block diagram of the CPU. Signals such as the

input clock and control lines are omitted from this diagram to make it simpler. The data path is

shown in blue and the control path is purple. Green blocks represent memory units/registers,

while grey ones are asynchronous logic (except the multiplier located inside the ALU). The CPU

consists of the following components which are described in the following subsections (for

detailed block diagrams and Verilog code, see Appendix C):

• State Machine

• Decoder block

• Instruction memory unit

• Data memory unit

• Register file

• Add 1 logic block

• Arithmetic Logic Unit (ALU)

o General ALU

o Multiplier

• Last-in First-out (LIFO) stack buffer

• Multiplexers

5.2. Instruction set

5.2.1. Overview and initial ideas

One of the most crucial early-stage design decisions was the creation of an instruction set

architecture (ISA) which the CPU’s implementation would be based on. Upon researching

different ISAs, the decision was made to proceed with an ISA similar to ARMv8 [1] which would

have two types of encoding for instructions – load/store encoding and three operand instruction

encoding. This general format (like many other RISC architectures) was chosen as it fits the

functional requirement of 16-bit long instruction words and provided space for up to 8 registers

in the CPU.

Generally, all instructions can be classified into one of these categories:

• Load/store operations

• Arithmetic

• Logical

• Shifts

• Jumps

• Stack manipulators

• Others

Fig. 5.1: Simplified CPU block diagram

Page 22 of 59

The CPU can accommodate up to 64 different commands due to the size of the opcode field and

therefore can be expanded by adding new instructions and hardware when the current design

does not meet a specific need or if a high degree of specialisation is required for a given

implementation. For instructions other than the memory load/store operations, the encoding can

be summarised in terms of bits as:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 Opcode
Rd: destination

register
Rs1: source
register 1

Rs2: source
register 2

5.2.2. Load/store operations

These instructions are used to manipulate the data RAM to retrieve values or save new values

into it from one of the CPU’s registers. The LDA and STA instructions require 11 bits in the

instruction word for the memory address and due to this need, their format is different from all

other instructions in the ISA. The most significant bit (MSB) of the instruction word is 1 which

distinguishes them from all other commands. The other two available commands follow the

standard pattern and start with 0. The instructions available in this category are:

• LDA (load direct address): load Rx with the value found at the specified memory address

in the data RAM (Rx = Mem[Memory Address])

• STA (store direct address): store the value of Rx at the specified memory address in the

data RAM (Mem[Memory Address] = Rx)

• LDR (load indirect address): load Rd with the value found at the memory address

specified by Rs1 in the data RAM (Rd = Mem[Rs1])

• STR (store indirect address): store the value of Rs1 at the memory address specified by

Rd in the data RAM (Mem[Rd] = Rs1)

The encoding of these instructions is summarised below. Rx represents the register on which the

load/store operation is performed in the case of LDA and STA. In the case of LDR and STR, Rd is

the register to which the value will be read from/stored to (respectively) and Rs1 is the register

which contains the memory address.

Instruction
Bits of Instruction Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LDA
1

0
Rx Memory Address

STA 1

LDR
0 1 0 1 0

1 0
Rd Rs1 Unused

STR 1 1

Page 23 of 59

5.2.3. Arithmetic operations

The CPU’s Arithmetic Logic Unit (ALU) can perform basic arithmetic operations on 16-bit

numbers like addition, subtraction and multiplication (division was not implemented due to

complex high hardware requirements). The implementation of the MLA command was essential

since it combines two operations into one command which shortens the operation A = A*B+C

from taking 3 clock cycles (multiply then add) to just 2. This instruction was included in the ISA

as this specific operation was required to complete the Linear Congruential Generator C++ code

test (see subsection 2.2. ‘Project outline’ and Appendix A). The ADC and SBC operations (with

carry) were implemented as additional operations to account for the use of 32-bit integers by the

user if desired, even though this is strongly discouraged. The available operations are:

• ADD (add): Rd = Rs1 + Rs2

• ADC (add with carry): Rd = Rs1 + Rs2 + CARRY

• ADO (add 1): Rd = Rs1 + 1

• SUB (subtract): Rd = Rs1 – Rs2

• SBC (subtract with carry): Rd = Rs1 – Rs2 + CARRY – 1

• SBO (subtract 1): Rd = Rs1 – 1

• MUL (multiply): Rd = Rs1 * Rs2

• MLA (multiply and add): Rd = (Rd * Rs1) + Rs2

• MLS (multiply and subtract): Rd = Rs2 – (Rd * Rs1)

The format of each of these instructions is summarised in the following table. Rd represents the

destination register while Rs1 and Rs2 represent the source registers 1 and 2, respectively.

Instruction
Bits of Instruction Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADD

0

0 1 0 1

0 0

Rd Rs1

Rs2
ADC 0 1

ADO 1 0 Unused

SUB

0 1 1 0

0 0
Rs2

SBC 0 1

SBO 1 0 Unused

MUL

0 1 1 1

0 0

Rs2 MLA 0 1

MLS 1 0

Page 24 of 59

5.2.4. Logical operations

The CPU is also capable of performing some basic logical operations. Although these are not

needed to execute the specified tasks outlined in the three test codes (see subsection 2.1. ‘Project

outline’ and Appendix A), they are included in the ISA for the sake of completeness and versatility.

The operations that fall under this category are:

• AND: Rd = Rs1 AND Rs2

• OR: Rd = Rs1 OR Rs2

• XOR: Rd = Rs1 XOR Rs2

• NOT: Rd = NOT Rs1

• NAND (NND): Rd = NOT (Rs1 AND Rs2)

• NOR: Rd = NOT (Rs1 OR Rs2)

• XNOR (XNR): Rd = NOT (Rs1 XOR Rs2)

The format of each of these instructions is summarised in the following table. Rd represents the

destination register while Rs1 and Rs2 represent the source registers 1 and 2, respectively.

Instruction
Bits of Instruction Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AND

0

0 0 1 1

0 0

Rd Rs1

Rs2 OR 0 1

XOR 1 0

NOT 1 1 Unused

NND

0 1 0 0

0 0

Rs2 NOR 0 1

XNR 1 1

5.2.5. Shift operations

The ALU can perform asynchronous shifts by a specified number of places. These are not directly

required for any of the testbench codes (see subsection 2.1. ‘Project outline’ and Appendix A), but

they provide a useful addition to the CPU. Shifts can be used to perform quick multiplication and

division by powers of 2. For a detailed description of the functionality of the ASR, ROR, and RRC

instructions, see Appendix D. The available operations in this category are:

• LSL (logical shift left): Rd = Rs1 shifted left by Rs2 number of places

• LSR (logical shift right): Rd = Rs1 shifted right by Rs2 number of places without copying

the most significant bit

Page 25 of 59

• ASR (arithmetic shift right): Rd = Rs1 shifted right by Rs2 number of places with the

sign of Rs1 preserved through sign extension (shifting in the most significant bit of Rs1

for every shift)

• ROR (shift right loop): Rd = Rs1 shifted right by Rs2 number of places with the value

shifted in being the least significant bit of Rs1 with every shift

• [DEPRECATED] RRC (shift right loop with carry): Rd = Rs1 shifted right by Rs2 number

of places with the value of the carry flip-flop of the ALU shifted in and the least significant

bit of Rs1 saved into the carry flip-flop with every shift

The RRC instruction was removed after a timing and resource analysis of the CPU (see section 6.

‘Final analysis of design’). The format of each of these instructions is summarised in the following

table. Rd represents the destination register while Rs1 and Rs2 represent the source registers 1

and 2, respectively.

Instruction
Bits of Instruction Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LSL

0

1 0 0 0

0 0

Rd Rs1 Rs2

LSR 0 1

ASR 1 0

ROR
1 0 0 1

0 0

RRC 0 1

5.2.6. Jump operations

The jump operations allow the user to directly manipulate the value of the program counter (PC)

to skip certain instructions or create conditional loops. Both conditional jumps and an

unconditional jump are implemented to allow a high degree of flexibility. The conditional jumps

also provide comparisons of two numbers. JMA was added as an alternative to JMP, without

needing a load operation beforehand; however, it is important to mention that JMA cannot reach

all addresses in the instruction RAM. The available jump instructions are:

• JMP (unconditional jump): unconditional jump to instruction with address Rd

• JMA (unconditional jump to address): jump to instruction at the address specified

(note: maximum address available is 0x1FF due to the size of the ‘Jump Address’ field)

• JC1 (conditional jump 1): jump to instruction with address Rd if Rs1 < Rs2

• JC2 (conditional jump 2): jump to instruction with address Rd if Rs1 > Rs2

• JC3 (conditional jump 3): jump to instruction with address Rd if Rs1 = Rs2

• JC4 (conditional jump 4): jump to instruction with index Rd if Rs1 = 0

Page 26 of 59

• JC5 (conditional jump 5): jump to instruction with index Rd if Rs1 ≥ Rs2

• JC6 (conditional jump 6): jump to instruction with index Rd if Rs1 ≤ Rs2

• JC7 (conditional jump 7): jump to instruction with index Rd if Rs1 ≠ Rs2

• JC8 (conditional jump 8): jump to instruction with index Rd if Rs1 < 0

The format of each of these instructions is summarised in the following table. Rd represents the

destination register (in this case, the destination of the jump) while Rs1 and Rs2 represent the

source registers 1 and 2, respectively.

Instruction
Bits of Instruction Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JMP 0 0 0 0 0 0 0 Rd Unused

JMA 0 1 Jump Address

JC1

0 0 0 1

0 0

Rd Rs1

Rs2 JC2 0 1

JC3 1 0

JC4 1 1 Unused

JC5

0 0 1 0

0 0

Rs2 JC6 0 1

JC7 1 0

JC8 1 1 Unused

5.2.7. Stack operations

These operations manipulate the stack, either by saving (pushing) a new value to it from a

specified register or by retrieving (popping) the latest value pushed onto the stack and saving it

in a specified register. These simple operations allow for primitive subroutines to be constructed

in assembly language (CLL and RTN commands can also be used; for details see subsection 5.2.8.

‘Other operations’); however, they require the user to think more intensively about their layout

in comparison to the simple-to-use BX and BL instructions of the ARMv8 architecture. The stack

is a last-in-first-out buffer, meaning that the value available for retrieval is the latest pushed to it.

For a detailed description of the stack’s operation and the reasoning behind its implementation,

refer to subsection 5.11. ‘Stack’. The operations in this category are:

• PSH (push): push the value of a register (Rs1) onto the stack

• POP (pop): save the latest value pushed onto the stack in a register (Rd)

Page 27 of 59

The format of these instructions is summarised in the following table. Rd represents the

destination register while Rs1 represents the source register 1. These instructions only take one

register operand each. Their register fields are different to make it clear what functionality they

perform (PSH requires a source, POP requires a destination).

Instruction
Bits of Instruction Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSH
0 1 0 1 0

0 0 Unused Rs1
Unused

POP 0 1 Rd Unused

5.2.8. Other operations

The operations in this category cannot be classified into any of the categories mentioned

previously. Nevertheless, their importance in the correct and efficient operation of the CPU is

crucial. The CLL and RTN instructions were added to allow the user to easily create basic

subroutines and nested functions in assembly language (for a detailed description of their

operation see Appendix E). The operations in this category include:

• MOV (move): Rd = Rs1

• CLL (make call): save the PC’s value to the stack and jump to the instruction at the

memory address specified in Rd

• RTN (return from call): load the latest value from the stack to the PC and jump to the

instruction at the memory address of that value

• NOP (no operation): do nothing for a clock cycle/wait

• STP (stop): halts all CPU operations, clears the stack, and signifies the end of the list of

instructions/program

The format of these instructions is summarised in the following table. Rd represents the

destination register while Rs1 represents the source register 1.

Instruction
Bits of Instruction Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOV

0

0 1 0 0 1 1 Rd Rs1 Unused

CLL
1 0 1 0

1 0 Rd Unused

RTN 1 1

Unused NOP
1 1 1 1

1 0

STP 1 1

Page 28 of 59

5.3. State machine

A crucial element of any CPU is the state machine. This design includes a simple state machine

with three possible states:

• FETCH (001) – the cycle during which the instruction memory is read and the instruction

that needs to be executed appears at its output.

• EXEC1 (010) – the execution cycle during which all necessary operations are performed,

as specified by the current instruction.

• EXEC2 (100) – an optional third cycle needed for the execution of some instructions, such

as multiplication and load instructions.

The following Moore state diagram shows the transition between the three states, dependent on

the inputs, RST and E2. The input RST resets the state machine to FETCH. The input signal E2

determines whether a third cycle is needed, depending on the current instruction. The 000 state

(not shown) that occurs during the initialisation of the state machine leads directly to the FETCH

state on the next rising edge of the clock without considering any of the inputs.

Pipelining is a simple way of optimising digital circuits. This means that the CPU would stay in the

EXEC1 cycle all the time, unless an instruction required an extra cycle to complete, in which case

the EXEC2 cycle would occur. The following changes were made to the state machine to achieve

pipelining:

• The internal state numbers were changed to the ones shown in brackets:

o FETCH (00) – initial state; it serves the same function as previously but needed to

be kept in for the very first cycle after initialising the CPU, i.e. the first command

still needs to be fetched.

o EXEC1 (01) – same function as previously.

o EXEC2 (10) – same function as previously.

Fig. 5.3.a: Basic state machine diagram

Page 29 of 59

The new Moore state diagram of the pipelined state machine is shown below.

5.4. Instruction memory unit

The design includes a 16-bit word length RAM unit that can hold up to 2048 memory words, as

required by the specification. This RAM unit only holds the instructions. A separate RAM unit is

used to store data. This separation was chosen to decrease the number of components needed for

the CPU to operate, as explained below.

This RAM unit is mostly independent of the rest of the CPU and it acts as read-only memory. This

implementation was chosen over a ROM unit because using a RAM gives the CPU versatility as an

element of a larger machine, such as a computer or smartphone since new instructions can be

loaded if required to do so.

The RAM also has a clock enable port. This was added to turn off the RAM when not in use, but

more importantly, to ensure correct timing of the instructions that appear at its output. When a

new instruction is read, this control port becomes de-asserted (active high) until the execution of

the new instruction is completed. Only then is the next instruction read by enabling the control

input. This means that there is no need for an instruction register to hold the currently executed

instruction. This decreases the number of components as well as power consumption.

5.5. Data memory unit

The second RAM unit is identical to the instruction RAM; however, it is only used for storing data

such as 16-bit C++ integers specified in the project specification. Like the instruction RAM, the

capacity is also 2048 words of data, each 16 bits long. This RAM also has a clock enable port, but

in this case, it was only added to reduce power consumption of the CPU. The data RAM unit can

store new data at request, using a STORE command, with its data input port connected to the

destination register multiplexer (see subsection 5.2. ‘Instruction set’ and Appendix C).

Fig. 5.3.b: Pipelined state machine diagram

Page 30 of 59

5.6. Register file

The register file contains eight 16-bit registers, which are implemented using D-type flip-flops.

The first register, R0, performs a specific function: it acts as a program counter (PC). This allows

direct manipulation of the PC during jump commands without any additional commands or

hardware.

The final decision was to include eight registers in the CPU as eight registers provide a reasonable

degree of versatility while being able to fit in with the 16-bit instruction word. The register file

concept was mainly based on the ARM architecture [3].

5.7. Add 1 logic block

The “+1” logic block is a simple adder. Its only function is to add 1 to the current value at its input.

This output is then passed to the multiplexer at the input of the PC and is saved to it during the

next rising clock edge. This block was needed to pipeline the jumps and thus achieve a completely

pipelined CPU. During a jump, the address of the next instruction is specified by one of the

registers. The PC needs to load this value and also count up by one in the same cycle, which is not

possible (the Quartus lpm_counter megafunction used for the PC is not able to count up and load

at the same time). The solution to this problem was simple – increment the required value by one

before loading it into the PC. This Add 1 logic block is used to achieve this.

5.8. Decoder

The decoder block is an integral part of the design. It controls many operations of the CPU and

ensures correct execution of all commands: it is responsible for controlling different components

and registers based on the current instruction. The internal logic is complex (annotated code is

provided in Appendix F), but it can be summarised in terms of output signals, which are active

high unless stated otherwise:

• R0_count – causes the program counter (PC) to increment its value by 1 when asserted.

• R0_en through R7_en – enable signals for the eight registers. The registers save the value

at their inputs when these signals are asserted.

• s1 through s6 – select signals for the six multiplexers in the CPU (note: the multiplexer at

the input of the PC is controlled by the ADD1_en signal; see below).

• RAMd_wren – enables writing to the data RAM when asserted; otherwise, data is read

from this memory unit.

Page 31 of 59

• RAMd_en and RAMi_en – clock enable signals for the two RAM units. These were added

to conserve power (prevent switching when the blocks are not in use) and remove the

need for an instruction register. When not asserted, the units are disabled.

• ALU_en – an enable signal for the ALU (active low), that was added to ensure that no

undefined behaviour exists during LOAD and STORE operations and to conserve power.

• E2 – a control signal for the state machine. When asserted it causes an extra cycle to occur,

which is needed for some instructions.

• Stack_en – an enable signal for the stack; added to conserve power.

• Stack_rst – a signal that clears the stack when asserted.

• Stack_rw – a signal that causes the stack to save the value at its input when asserted.

Otherwise, a read operation is performed.

• ADD1_en – an enable signal that controls the operation of the “+1” block. When asserted,

the multiplexer at the input of the PC chooses this block’s output to be fed into the PC.

5.9. Arithmetic logic unit (ALU)

The goal of the Verilog Arithmetic Logic Unit (ALU) is to complete any logical or arithmetic

operations efficiently so that the result can be saved back to the required register. Hence, the ALU

must be asynchronous to avoid the need for extra cycles. The only delay between the inputs to

the ALU and the result is due to the propagation delay of the logic within the block itself.

The ALU is designed and implemented as a Verilog HDL block. This is achieved using an ‘always’

block with an automatic sensitivity list. Inside this block, a ‘switch’ in the form of a ‘case’

statement is used, which, based on the opcode and the register inputs, performs the correct

operation. The output is updated whenever the opcode changes. Therefore, a clock is not required

for the ALU. Using the enable input (active low) can disable the ALU during load/store operations

to conserve power and avoid any unintended operations.

The inputs and outputs are given the “signed” flag, which indicates the use of 2’s complement.

This allows for easy comparison between Rs1 and Rs2, especially for conditional jump

instructions.

Fig. 5.9 shows a snippet of Verilog code (for a more detailed description, see Appendix G).

Page 32 of 59

Fig. 5.9: Snippet of the ALU’s Verilog HDL code

5.10. Multiplier

5.10.1. Initial ideas

The multiplier is an integral part of any ALU, which meant that the final design needed to be both

power- and speed-efficient. Considering these requirements, initial ideas came from some basic

multiplier designs: an array multiplier or one built using the Ancient Egyptian/Russian peasant

algorithm. However, neither of these were suitable for the project requirements:

An array multiplier is built using binary multiplication rules, forming partial products using bits

of the two numbers being multiplied. The partial products are shifted and added, as explained in

the lecture slides from MIT [4]. The main advantage of this design is that only combinational logic

is used, meaning multiplication can be completed in one cycle. As pointed out by M. Moeng and J.

Wei [5], implementing an N-bit array multiplier would require N2 full adders and N2 AND gates.

Therefore, this implementation comes with two significant drawbacks: high power consumption

and more importantly, complex debugging. For a 16-bit multiplier, this implementation would

require 256 full adders and 256 AND gates (debugging it would be close to impossible). Another

potential drawback could be a high propagation delay, due to the high number of logic gates,

however this was not investigated in detail. Numerous optimisations of the basic array multiplier

exist, the most notable being the Wallace multiplier [6], but the final decision was to try a different

approach.

Ancient Egyptian/Russian peasant algorithm [7]: A reasonably straightforward algorithm,

where one of the multiplied numbers is repeatedly divided by 2, while the other is repeatedly

multiplied by 2. Initially, the product is set to 0. If the result of the division is odd, add the

multiplied number to the result. This process is repeated until repeated division by 2 produces 1.

Implementing this would be relatively easy since the algorithm requires two shift registers and a

Page 33 of 59

32-bit adder. The biggest drawback of this implementation is that multiplication could take up to

16 cycles! Furthermore, this implementation would make it very hard to pipeline the CPU. This

design would be a good fit for circuits where speed does not matter as much as it does in a CPU

since it is easy to implement and requires very few components. An application of this algorithm

which comes to mind would be a basic calculator, which acts as an ALU with only one arithmetic

instruction being executed at any given time.

5.10.2. Lookup table and Karatsuba’s algorithm

The final implementation was based on the circuit designed by M. Moeng and J. Wei [5]. This

circuit provides a nice balance between the number of cycles to complete the multiplication and

the complexity of the circuit. The main difference between the design proposed in [5] and our

implementation is the lack of pipelining. It was not necessary to pipeline the multiplier, as the

overall CPU was pipelined.

The circuit is built using a lookup table, the Karatsuba algorithm and a multiplication property

observed by Ling [8] and Vinnakota [9].

Multiplication property: If two numbers, A and B (where B is smaller than or equal to A) are

being multiplied, then the product P=AB, is given by the algorithm below; for proof and examples

see publications from Ling [8] and Vinnakota [9].

 Let 𝑥 = ⌊
𝐴 + 𝐵

2
⌋ and 𝑦 = ⌊

𝐴 − 𝐵

2
⌋ ; then P is given by:

𝑃 = 𝑥2 − 𝑦2, if the numbers 𝐴 and 𝐵 have the same parity and

𝑃 = 𝑥2 − 𝑦2 + 𝐵, otherwise.

The Karatsuba algorithm: Let X be an N-bit binary number: then define X as {X1, X0}, where X1

represents the first N/2 bits and X0 is the second group of N/2 bits. The algorithm states:

1. For A and B, define {A1, A0} and {B1, B0}, where A and B are N-bit long binary numbers

2. Form the following products using an N/2-bit multiplier: P1=A1B1, P2=A1B0, P3=A0B1 and

P4=A0B0.

3. Let X << K, denote a left shift of X by K bits. Then the final product of A and B is given by

P = (P1 << N) + (P2 << N/2) +(P3 << N/2) + P4

Lookup table: The purpose of the lookup table is to store all the squares of integers up to and

including 255 so that they are available at run-time. These are used for 8-bit multiplication, using

the property described above. The lookup table was implemented using a ROM unit with 256

words, with each word 16 bits long. The ROM is used to store the squares of 8-bit numbers: with

Page 34 of 59

8-bits, there are 256 possible numbers and, at most, the square of such a number will require 16

bits. The .mif file was generated using a C++ program.

5.10.2. Final implementation and verification

The final implementation consisted of four 8-bit multipliers and three 32-bit adders. First, the 8-

bit multiplier was designed and tested.

The 8-bit multiplier was implemented using the previously mentioned multiplication property

and a lookup table. Firstly, two arithmetic components and a right shift (which is equivalent to

division by 2 and the floor function) are used to calculate 𝑥 = ⌊
𝐴+𝐵

2
⌋ and 𝑦 = ⌊

𝐴−𝐵

2
⌋. Values x and

y are then fed to the ROM unit as addresses to the lookup table, to obtain their squares. Address

N in the lookup table contains the square of number N. To determine whether to add B or not to

the final product, a multiplexer was used with a select line obtained from an XOR gate of the least

significant bits of the two multiplied numbers (checking the parity of the two numbers in

accordance with the multiplication property).

While designing this circuit, a timing problem was encountered - the ROM unit could not be made

asynchronous within the Cyclone IV family. The initial plan was to have the lookup table

asynchronous so that that multiplication could be completed in one cycle. However, this was not

possible, so the decision was to proceed with a synchronous implementation. Even though three

cycles would make it slightly harder to pipeline the overall CPU, the CPU already needed to

support three-cycle, such as loading instructions.

To complete the 16-bit multiplier, the final circuit made use of the 8-bit multiplier and the

Karatsuba algorithm, as described above. The partial products are shifted left and added using

three 32-bit arithmetic components. The final circuit can be seen in Appendix I.

5.11. Stack

A major advantage of this CPU is the ability to run subroutines and nested functions. One way of

handling these is to store the values needed after the end of each subroutine to the data RAM and

load them back into the registers once the call is completed. However, this is not a practical

implementation as there is only a limited number of registers available. The alternative is to have

a temporary storage block for these variables, which would be quicker to access than a RAM and

would allow for nested subroutines. A stack is usually implemented either using specific branch

opcodes (such as in ARMv8 [1]) or by using a stack block which is similar to a RAM unit but

without control over which memory locations are written or read, hence requiring fewer logic

components and a smaller chip area.

Page 35 of 59

All the memory megafunction blocks provided in Quartus are of the FIFO (First-in First-out) type,

which are usually used for a queue or list where the order of the data must be maintained.

However, when executing a subroutine, the data from previous subroutines must be returned to

the registers as the program steps out of each subroutine in order. This required a LIFO (Last-in

First-out) buffer block.

The LIFO stack buffer was implemented as a Verilog HDL block based on code by an anonymous

author [10] as shown below.

Fig 5.11: Stack Verilog code

5.12. Multiplexers

Multiplexers are simple asynchronous logic devices. They were custom made in Verilog as this

improved readability over using built-in megafunctions. Their initial design was a block diagram

that contained some smaller multiplexers chained together. This was later changed to a more

elegant Verilog implementation since it provided a more efficient circuit. The multiplexers simply

select which input to pass to their output based on their select input line(s) (see Appendix J).

Page 36 of 59

6. Final analysis of design

The following section describes some test results, as well as an analysis on power consumption

and clock frequency of the CPU. Many tests were performed on the two versions (original and

pipelined) of the CPU to quantise its performance. The initial maximum frequency tests were

done with both the original design as well as the pipelined design to see the performance impact

of pipelining. Further tests were only performed on the pipelined version as it performed better

than the original design.

6.1. Benchmark tests

Before performing the three benchmark tests outlined in the project specification, every

command was tested individually in a custom-made program. The three tests were then

translated into code executable by the CPU and tested using the pipelined version of the CPU. The

waveform simulation results were recorded and can be seen in Appendix L. Multiple scenarios

were considered for each test so that the CPU’s functionality was thoroughly verified. The real

time taken for each of the tests to complete was calculated using the value of 9.091 ns as the true

clock period. This value was obtained from running timing simulations (see subsection 6.2.

‘Maximum clock frequency tests’ for more details). The geometric mean time was calculated using

𝑇𝐺 = (𝑇1𝑇2𝑇3)1/3 where T1, T2, and T3 represent the time taken for each test to complete. Fig 6.1

shows a summary of these results.

Test Number of Cycles Real Time Taken Geometric Mean Time

Fibonacci
(n=5)

221 2.0091 µs

0.685 µs LCG
44

(average)
0.400 µs

(average)

Linked List
(10 elements)

44
(average)

0.400 µs
(average)

Fig. 6.1.a: Summary of the results of the three benchmark tests

6.2. Maximum clock frequency tests

The line above shows the Synopsys Design Constraints file used to set up timing tests, setting the

clock input to a target period of 9.1ns giving a frequency of approximately 110MHz.

The three different models shown in Fig. 6.2 have different delays and gate transition speeds

which affect the total propagation delay of signals within the CPU. A longer delay means that a

block has longer setup and hold times to produce outputs, for given inputs. A longer delay results

in a lower maximum clock frequency. The limiting factor of the maximum clock frequency was

Page 37 of 59

usually due to the data delay between the instruction RAM and the stack. Initially, this seemed to

be a false path as there is no instruction for which data flows directly to the stack.

Further analysis using the TimeQuest tool (shown in Appendix K) revealed that the limiting path

was the control path for the stack block which travels from the instruction RAM through the

decoder (which provides control signals for the stack) to the stack itself. This results in a delay of

between 9 and 9.5ns on the Slow 85C model and around 5ns on the Fast 0C model.

 Maximum Frequency

Model Original Pipelined Pipelined -RRC

Slow 1.2V 85C 102.57 MHz 106.08 MHz 109.51 MHz

Slow 1.2V 0C 112.79 MHz 117.44 MHz 121.29 MHz

Fast 1.2V 0C 184.84 MHz 193.57 MHz 199.20 MHz

Fig. 6.2: Results of the maximum clock frequency with different test cases.

Note: -RRC indicates the removal of the RRC instruction from the ALU. Original stands for the

CPU design before pipelining.

The timing tests were first done using the original design, with each instruction taking between

two and three cycles, averaging ~0.4 instructions per cycle (IPC). On the pipelined version, each

instruction takes between one and two cycles, averaging an IPC of ~0.86. Along with increased

maximum clock frequency, pipelining caused an increase of ~125% in instructions executed per

cycle over the original design.

The third column shows the tests repeated with the pipelined version but with the RRC

instruction removed from the ALU, which further improved the clock frequency.

6.3. FPGA area and utilisation tests

When each version of the CPU was compiled fully, the Fitter report showed how much of the

selected FPGA was utilised as well as a breakdown of the resources that each instance within the

design required. The breakdowns listed the number of logic cells used within each instance as

well as the number of registers and the amount of memory in bits.

 Resource Usage

Version Logic Cells ALU Logic Cells Logic Registers Memory (Bits)

Original 3186 1868 667 73728

Pipelined 3212 1868 666 73728

Pipelined -RRC 2786 1438 666 73728

Fig. 6.3.a: Resource usage within the FPGA as determined by the Fitter

Page 38 of 59

The most resource-intensive blocks were

the ‘LIFOstack’ and the ALU. Within the

ALU there was an instance named “Mod0”

which contributed to almost 1/6th of the

logic cells used by the ALU (as shown in Fig

6.3.b). This was not an instance we created.

The ‘lpm_divide’ block was automatically

added to the symbol due to the use of the

modulus function (“%” symbol) used for the RRC instruction. After commenting out the RRC case,

logic cell utilisation of the ALU fell by approximately 15%, while also increasing the maximum

clock frequency. We decided to continue with this instruction removed as it has very similar

functionality to the ROR instruction and is also difficult to use since the carry bit would have to

be set by the previous instruction. However, our instruction definitions do not include

information on how to use a carry bit or whether to ignore it, compared to the ARM architecture.

The difference in utilisation is fully shown in Appendix M.

6.4. Power analysis tests

All the power analysis tests were done with the target clock period set to 9.091ns (clock

frequency set to ~110 MHz) as this is close to the maximum for the original design using the Slow

1200mV 0C Model.

 Dynamic Power Static Power Confidence

Original 58.87 mW 43.53 mW Low: insufficient toggle rate data

Pipelined 35.00 mW 43.46 mW Low: insufficient toggle rate data

Pipelined -RRC 33.14 mW 43.40 mW Low: insufficient toggle rate data

Fig. 6.4.a: Thermal Power Dissipation of the three versions of the CPU

The confidence level remained low during all the tests as we did not have a Value Change Dump

(VCD) file which provides the Power Analyser with information about how often the nodes within

the device change state. Without this information, the Power Analyser guesses the states either

from a previous simulation or using a conservative estimate that the nodes change state at around

12.5% of the frequency of the input clock signal. The static power remained similar through all

three tests since the Fitter picked the same device and the design had roughly the same number

of static devices such as RAM units and registers. Pipelining had a significant impact on the

dynamic power consumption of the circuit, causing a reduction of ~41%. This is primarily due to

reduced signal switching between different states. The FETCH state that existed in the original

design sets many control lines to low during the FETCH phase and then back to high during

EXEC1. However, in the pipelined version the FETCH cycle is removed. In this version, the lines

Fig. 6.3.b: Resource utilisation breakdown of the ALU

Page 39 of 59

can remain high, significantly reducing the amount of switching between cycles and thus,

decreasing dynamic power consumption.

7. Reflection

The following section summarises our team’s evaluation of the success of the final design, as well

as providing some personal thoughts on the project progression and outcome.

7.1 Project success

Before starting this project, a list of functional and non-functional requirements has been made

(see subsection to 2.2 ‘Project specification’). Most of those requirements have been met, but

some required more work than expected.

Implementing a multiplier circuit proved to be a challenging task, which required researching

many different implementations. The biggest drawback of our multiplier is the fact that it is

synchronous. Therefore, it takes two cycles to calculate the product. Initially, the aim was to use

one of the many asynchronous memory blocks available in Quartus. This would make the

multiplier block asynchronous and more efficient. However, asynchronous memory blocks are

not available within Cyclone IV.

Pipelining turned out to be a handy add-on to the final design. Not only did pipelining reduce the

number of cycles needed to complete a particular instruction, but it also reduced the overall

power consumption and increased the maximum clock frequency. It is important to notice that

without pipelining the last non-functional requirement would not have been met. A non-pipelined

circuit was consuming just over 50mW of dynamic power, but a pipelined circuit stayed well

below the threshold of 50mW (for more information see section 6. ‘Final analysis of design).

Using the Harvard architecture with separate instruction and data memory proved to be the right

choice. Due to the nature of the architecture, the occurrence of self-modifying code is virtually

impossible. Furthermore, using the Harvard architecture prevents the pipeline stall during a store

instruction as seen in MU0. Finally, we believed that using this architecture would reduce power

consumption.

The CPU successfully executed the three required tests, as set out in the specification (see

subsection 6.1 ‘Benchmark tests’). There were no specialised instructions and the source codes

could be implemented directly into the CPU just by using basic instructions such as loading,

jumping and arithmetic. As expected, the Fibonacci test took the longest time to complete. This is

not due to the CPU architecture, but due to the nature of the recursive algorithm. Even though

Page 40 of 59

there are many different ways to calculate Fibonacci numbers, some much faster than recursion,

implementing recursion into the CPU turned out to be a challenging, but worthwhile task. The

CPU is capable of performing a wide range of recursive functions, rather than just being limited

to calculating the nth Fibonacci number.

7.2 Future work

Even though the final CPU is capable of performing a wide range of operations, there are a few

features that might be considered in the future. The instruction set is quite versatile and with 64

opcodes available, more instructions could be added.

An instruction that comes to mind is an immediate load. This was not implemented initially

because the instruction word length is not long enough to support an 11-bit data memory location

with the chosen template for instructions in the ISA.

Secondly, indirect memory addressing might be improved, to take into account register offsets.

ARMv8 supports many different types of indirect addressing [1], including those with offsets.

While this was not a requirement of the project, such an instruction might be useful when the CPU

is considered as a part of a larger system.

Finally, many algorithms require floating point numbers and division. With these two features

added and the current arithmetic capabilities, the CPU would be able to deal with many advanced

mathematical concepts such as Maclaurin series, trigonometric functions and exponentiation.

7.3 Final thoughts

This project was quite challenging but also rewarding. We learned quite a lot about modern CPU

architectures and implementations of certain digital circuits, such as ALUs, multipliers and

memory buffers. Furthermore, we obtained key skills around project management, planning and

writing documentation. The project went mostly according to plan with few minor issues along

the way and was submitted on time.

Page 41 of 59

8. Bibliography

[1] ARM, “ARM Information Center”.

Available: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204j/Cjafgdih.html

[Accessed: May 18, 2020].

[2] E. De Vries, “Introduction to the MIPS Processor”, 2016.

Available: https://www.scss.tcd.ie/jeremy.jones/vivio/dlx/dlxtutorial.htm [Accessed: May 17,

2020].

[3] Arm Limited, “Assembler User Guide: ARM registers”.

Available: http://www.keil.com/support/man/docs/armasm/armasm_dom1359731128950.htm

[Accessed: May 18, 2020].

[4] Massachusetts Institute of Technology, “Arithmetic Circuits & Multipliers”, 2016. Available:

http://web.mit.edu/6.111/www/f2016/handouts/L08.pdf [Accessed: May 23, 2020].

[5] M. Moeng and J. Wei, “Optimising Multipliers for the CPU: A ROM based approach”, 2007.

Available: https://people.eecs.berkeley.edu/~kubitron/courses/cs252-

S07/projects/reports/project6_report_ver2.pdf [Accessed: May 25, 2020].

[6] C. S. Wallace, “A Suggestion for a Fast Multiplier”, IEEE Transactions on Electronic Computers, vol.

EC-13, (1), pp. 14-17, 1964. DOI: 10.1109/PGEC.1964.263830 [Accessed: May 23, 2020].

[7] Wikipedia contributors, “Ancient Egyptian multiplication”, 2020.

Available: https://en.wikipedia.org/w/index.php?title=Ancient_Egyptian_multiplication&oldid=957

721403 [Accessed: May 23, 2020].

[8] H. Ling, “An approach to implementing multiplication with small tables”, IEEE Transactions on

Computers, vol. 39, (5), pp. 717-718, 1990. DOI: 10.1109/12.53588 [Accessed: May 25, 2020].

[9] B. Vinnakota, “Implementing multiplication with split read-only memory”, IEEE Transactions on

Computers, vol. 44, (11), pp. 1352-1356, 1995. DOI: 10.1109/12.475134 [Accessed: May 25, 2020].

[10] Anonymous, “Verilog for Beginners: Last-In-First-Out Buffer”. Available:

https://esrd2014.blogspot.com/p/last-in-first-out-buffer.html [Accessed: Jun 04, 2020].

[11] AVR Microcontrollers, “AVR Instruction Set Manual,” 2016. Available:

http://ww1.microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf

[Accessed: May 20, 2020].

[12] P. Johnson, “LIFO”, 2009. Available: https://www.beyond-

circuits.com/wordpress/2009/10/lifo/ [Accessed: Jun 04, 2020].

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204j/Cjafgdih.html
https://www.scss.tcd.ie/jeremy.jones/vivio/dlx/dlxtutorial.htm
http://www.keil.com/support/man/docs/armasm/armasm_dom1359731128950.htm
http://web.mit.edu/6.111/www/f2016/handouts/L08.pdf
https://people.eecs.berkeley.edu/~kubitron/courses/cs252-S07/projects/reports/project6_report_ver2.pdf
https://people.eecs.berkeley.edu/~kubitron/courses/cs252-S07/projects/reports/project6_report_ver2.pdf
https://en.wikipedia.org/w/index.php?title=Ancient_Egyptian_multiplication&oldid=957721403
https://en.wikipedia.org/w/index.php?title=Ancient_Egyptian_multiplication&oldid=957721403
https://esrd2014.blogspot.com/p/last-in-first-out-buffer.html
http://ww1.microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf
https://www.beyond-circuits.com/wordpress/2009/10/lifo/
https://www.beyond-circuits.com/wordpress/2009/10/lifo/

Page 42 of 59

9. Appendix

A. C++ test codes

A.1. Calculate Fibonacci numbers using recursion

Page 43 of 59

A.2. Calculate pseudo-random integers with a linear congruential generator (LCG)

Page 44 of 59

A.3. Traverse a linked list to find an item

Page 45 of 59

B. Freehand ISA map

Page 46 of 59

C. Complete Block Diagram File

Register Rs1 also feeds into RAMd so the STORE instruction can set RS1 and save the value

without enabling the ALU, shown closer below:

Page 47 of 59

D. ASR, ROR and RRC explained

Arithmetic Shift Right uses the >>> bitwise operator, which shifts “RS1” right by the value of “RS2”

while shifting in the old MSB. Then appending the original MSB to the front to create a 17-bit

number to fit in the ‘alusum’ register.

ROR uses both logical shift operators along with an OR to simplify a rotational shift. As RS1 is 16

bits long, every 16 shifts the result is the same as no shift and so only the last 4 bits of RS2 are

needed to determine the result. RS1 is shifted right by the value and left by 16, minus the value to

represent the LSB is shifted into the MSB with each shift. The two values are then OR’d together.

RRC is like ROR, but the LSB is shifted into the carry slot, and the previous carry value is shifted

into the MSB. As the size of the value being rotated is 17 bits rather than 16, the remainder of RS2

divided by 17 is needed. (RS2 mod 17) This results in a large lpm_divide block being added to the

ALU.

E. CLL and RTN explained

The CLL and RTN instructions allow for an operation similar to a C++ function call and return:

• CLL Rd – saves the value of the PC to the top of the stack and loads the value of Rd into the

PC, effectively jumping to the instruction at the memory address specified in Rd.

• RTN – retrieves a value from the stack then (in EXEC2) saves this value into the PC (also

reads the instruction at that location in the pipelined version).

Due to the usage of one single stack by both the user and these instructions, the use of these

instructions needs to be given special care. A recommended call and return can be structured in

the following way:

 ...
0. PSH R2

1. PSH R1 save the variables that need to be kept track of

2. CLL R7 make a call (R7 contains the value 0x7)
3. POP R1 retrieve the variables saved before the call was made

4. POP R2

...
7. Some operation

8. RTN

...

Page 48 of 59

F. Decoder block

The decoder is an asynchronous block which determines the current instruction from the

opcode, setting the corresponding wire (lines 44-59) high and the rest low. Next, the control

lines are set (lines 61-90) depending on which controls are needed for the current instruction as

well as the multiplexers for selecting registers Rd, Rs1 & Rs2.

Decoder.v and the symbol created from the Verilog:

Page 49 of 59

G. Arithmetic Logic Unit block

ALU symbol:

ALU_top.bdf:

alu.v:

Page 50 of 59

More detail on the multiplier (mul16) is given in Appendix I.

Page 51 of 59

H. C++ code for generating .mif files

Page 52 of 59

Page 53 of 59

Page 54 of 59

I. 1 cycle multiplier block

Multiplier symbol:

mul16.bdf:

mul8.bdf:

Page 55 of 59

J. Register Multiplexer

K. TimeQuest timing analyser

The top panel lists all the paths between nodes in order of least slack to most slack. In the case of

the desired clock not being achievable, the worst path is shown first and is red. The lower panels

show details about the selected path. The lower left panel shows the route and timing of the signal

and the lower right panel is a visual representation of the two clock cycles as well as the time

taken for the data to reach the end node, and when the data needs to reach the end node for the

result to be valid. In the image, the data delay is 0.855ns shorter than the data required time

resulting in the 0.855ns slack.

Page 56 of 59

L. Test Waveforms

L.1. Calculate Fibonacci numbers using recursion

Fibonacci Test (N=1)

Fibonacci Test (N=5) - this is the benchmark test from the project brief

Page 57 of 59

Fibonacci Test (N=6)

L.2. Calculate pseudo-random integers with a linear congruential generator (LCG)

Test 1: (s = 3, a = 4, b = 5, n = 3) Expected 387, Result 387, Took 28 cycles from start to result.

Page 58 of 59

Test 2: (s = 7, a = 6, b = 4, n = 5) Expected 7234, Result 7234, 40 cycles from start to result

Test 3: (s = 4, a = 2, b = 50, n = 9) Expected 54738, Result 54738, 64 cycles from start to result.

L.3. Traverse a linked list to find an item

The following waveform shows traversal of a linked list to find the value 5.

Page 59 of 59

M. Resource utilisation report

The image above is the resource utilisation of the Pipelined CPU before the RRC instruction was

removed. Within the ‘ALU_top’ instance, there is a lpm_divide block which adds a significant

resource use to the ALU without adding much functionality. The image below shows the

resulting report where the utilisation is much lower.

	1. Introduction
	2. Problem definition
	2.1. Project outline
	2.2. Project specification

	3. Project planning and management
	3.1. Project aims and milestones
	3.2. Team roles
	3.3. Communication
	3.4. Planning

	4. Project timeline
	5. Design process
	5.1. Overview of the CPU
	5.2. Instruction set
	5.2.1. Overview and initial ideas
	5.2.2. Load/store operations
	5.2.3. Arithmetic operations
	5.2.4. Logical operations
	5.2.5. Shift operations
	5.2.6. Jump operations
	5.2.7. Stack operations
	5.2.8. Other operations

	5.3. State machine
	5.4. Instruction memory unit
	5.5. Data memory unit
	5.6. Register file
	5.7. Add 1 logic block
	5.8. Decoder
	5.9. Arithmetic logic unit (ALU)
	5.10. Multiplier
	5.10.1. Initial ideas
	5.10.2. Lookup table and Karatsuba’s algorithm
	5.10.2. Final implementation and verification

	5.11. Stack
	5.12. Multiplexers

	6. Final analysis of design
	6.1. Benchmark tests
	6.2. Maximum clock frequency tests
	6.3. FPGA area and utilisation tests
	6.4. Power analysis tests

	7. Reflection
	7.1 Project success
	7.2 Future work
	7.3 Final thoughts

	8. Bibliography
	9. Appendix
	A. C++ test codes
	A.1. Calculate Fibonacci numbers using recursion
	A.2. Calculate pseudo-random integers with a linear congruential generator (LCG)
	A.3. Traverse a linked list to find an item

	B. Freehand ISA map
	C. Complete Block Diagram File
	D. ASR, ROR and RRC explained
	E. CLL and RTN explained
	F. Decoder block
	G. Arithmetic Logic Unit block
	H. C++ code for generating .mif files
	I. 1 cycle multiplier block
	J. Register Multiplexer
	K. TimeQuest timing analyser
	L. Test Waveforms
	L.1. Calculate Fibonacci numbers using recursion
	L.2. Calculate pseudo-random integers with a linear congruential generator (LCG)
	L.3. Traverse a linked list to find an item

	M. Resource utilisation report

