ALU enable control added, minor fix with RRC

Multiply still to be updated
This commit is contained in:
Aadi Desai 2020-06-02 16:57:58 +01:00
parent 3f0c91b0ff
commit 2ca1e90a2c

147
alu.v
View file

@ -36,76 +36,83 @@ assign JC8 = (Rs1 < 0);
always @(*) always @(*)
begin begin
case (opcode) if(!enable)
6'b000000: alusum = {1'b1, Rd}; // JMP Unconditional Jump, first bit high to indicate jump and passes through Rd begin
case (opcode)
6'b000100: alusum = {JC1, Rd}; // JC1 Conditional Jump A < B 6'b000000: alusum = {1'b1, Rd}; // JMP Unconditional Jump, first bit high to indicate jump and passes through Rd
6'b000101: alusum = {JC2, Rd}; // JC2 Conditional Jump A > B
6'b000110: alusum = {JC3, Rd}; // JC3 Conditional Jump A = B 6'b000100: alusum = {JC1, Rd}; // JC1 Conditional Jump A < B
6'b000111: alusum = {JC4, Rd}; // JC4 Conditional Jump A = 0 6'b000101: alusum = {JC2, Rd}; // JC2 Conditional Jump A > B
6'b000110: alusum = {JC3, Rd}; // JC3 Conditional Jump A = B
6'b001000: alusum = {JC5, Rd}; // JC5 Conditional Jump A >= B / A !< B 6'b000111: alusum = {JC4, Rd}; // JC4 Conditional Jump A = 0
6'b001001: alusum = {JC6, Rd}; // JC6 Conditional Jump A <= B / A !> B
6'b001010: alusum = {JC7, Rd}; // JC7 Conditional Jump A != B 6'b001000: alusum = {JC5, Rd}; // JC5 Conditional Jump A >= B / A !< B
6'b001011: alusum = {JC8, Rd}; // JC8 Conditional Jump A < 0 6'b001001: alusum = {JC6, Rd}; // JC6 Conditional Jump A <= B / A !> B
6'b001010: alusum = {JC7, Rd}; // JC7 Conditional Jump A != B
6'b001100: alusum = {1'b0, Rs1 & Rs2}; // AND Bitwise AND 6'b001011: alusum = {JC8, Rd}; // JC8 Conditional Jump A < 0
6'b001101: alusum = {1'b0, Rs1 | Rs2}; // OR Bitwise OR
6'b001110: alusum = {1'b0, Rs1 ^ Rs2}; // XOR Bitwise XOR 6'b001100: alusum = {1'b0, Rs1 & Rs2}; // AND Bitwise AND
6'b001111: alusum = {1'b0, ~Rs1}; // NOT Bitwise NOT 6'b001101: alusum = {1'b0, Rs1 | Rs2}; // OR Bitwise OR
6'b001110: alusum = {1'b0, Rs1 ^ Rs2}; // XOR Bitwise XOR
6'b010000: alusum = {1'b0, ~Rs1 | ~Rs2}; // NND Bitwise NAND 6'b001111: alusum = {1'b0, ~Rs1}; // NOT Bitwise NOT
6'b010001: alusum = {1'b0, ~Rs1 & ~Rs2}; // NOR Bitwise NOR
6'b010010: alusum = {1'b0, Rs1 ~^ Rs2}; // XNR Bitwise XNOR 6'b010000: alusum = {1'b0, ~Rs1 | ~Rs2}; // NND Bitwise NAND
6'b010011: alusum = {1'b0, Rs1}; // MOV Move (Rd = Rs1) 6'b010001: alusum = {1'b0, ~Rs1 & ~Rs2}; // NOR Bitwise NOR
6'b010010: alusum = {1'b0, Rs1 ~^ Rs2}; // XNR Bitwise XNOR
6'b010100: alusum = {1'b0, Rs1} + {1'b0, Rs2}; // ADD Add (Rd = Rs1 + Rs2) 6'b010011: alusum = {1'b0, Rs1}; // MOV Move (Rd = Rs1)
6'b010101: alusum = {1'b0, Rs1} + {1'b0, Rs2} + carryin; // ADC Add w/ Carry (Rd = Rs1 + Rs2 + C)
6'b010110: alusum = {1'b0, Rs1} + {17'b00000000000000001}; // ADO Add 1 (Rd = Rd + 1) 6'b010100: alusum = {1'b0, Rs1} + {1'b0, Rs2}; // ADD Add (Rd = Rs1 + Rs2)
6'b010111: ; 6'b010101: alusum = {1'b0, Rs1} + {1'b0, Rs2} + carryin; // ADC Add w/ Carry (Rd = Rs1 + Rs2 + C)
6'b010110: alusum = {1'b0, Rs1} + {17'b00000000000000001}; // ADO Add 1 (Rd = Rd + 1)
6'b011000: alusum = {1'b0, Rs1} - {1'b0, Rs2}; // SUB Subtract (Rd = Rs1 - Rs2) 6'b010111: ;
6'b011001: alusum = {1'b0, Rs1} - {1'b0, Rs2} + carryin - {17'b00000000000000001}; // SBC Subtract w/ Carry (Rd = Rs1 - Rs2 + C - 1)
6'b011010: alusum = {1'b0, Rs1} - {17'b00000000000000001}; // SBO Subtract 1 (Rd = Rd - 1) 6'b011000: alusum = {1'b0, Rs1} - {1'b0, Rs2}; // SUB Subtract (Rd = Rs1 - Rs2)
6'b011011: ; 6'b011001: alusum = {1'b0, Rs1} - {1'b0, Rs2} + carryin - {17'b00000000000000001}; // SBC Subtract w/ Carry (Rd = Rs1 - Rs2 + C - 1)
6'b011010: alusum = {1'b0, Rs1} - {17'b00000000000000001}; // SBO Subtract 1 (Rd = Rd - 1)
6'b011100: // MUL Multiply (Rd = Rs1 * Rs2) 6'b011011: ;
begin
// mul1 = Rs1; 6'b011100: // MUL Multiply (Rd = Rs1 * Rs2)
// mul2 = Rs2; begin
alusum[16] = 1'b0; // mul1 = Rs1;
{mulextra, alusum[15:0]} = Rs1 * Rs2; // mul2 = Rs2;
end alusum[16] = 1'b0;
6'b011101: // MLA Multiply and Add (Rd = Rs2 + (Rd * Rs1)) {mulextra, alusum[15:0]} = Rs1 * Rs2;
begin end
// mul1 = Rs1; 6'b011101: // MLA Multiply and Add (Rd = Rs2 + (Rd * Rs1))
// mul2 = Rs2; begin
alusum[16] = 1'b0; // mul1 = Rs1;
{mulextra, alusum[15:0]} = (Rd * Rs1) + Rs2; // mul2 = Rs2;
end alusum[16] = 1'b0;
6'b011110: // MLS Multiply and Subtract (Rd = Rs2 - (Rd * Rs1)[15:0]) {mulextra, alusum[15:0]} = (Rd * Rs1) + Rs2;
begin end
// mul1 = Rs1; 6'b011110: // MLS Multiply and Subtract (Rd = Rs2 - (Rd * Rs1)[15:0])
// mul2 = Rs2; begin
alusum = {1'b0, Rs2 - (Rd * Rs1)}; // mul1 = Rs1;
end // mul2 = Rs2;
6'b011111: alusum = mulextra; // MRT Retrieve Multiply MSBs (Rd = MSBs) alusum = {1'b0, Rs2 - (Rd * Rs1)};
end
6'b100000: alusum = {1'b0, Rs1 << Rs2}; // LSL Logical Shift Left (Rd = Rs1 shifted left by value of Rs2) 6'b011111: alusum = mulextra; // MRT Retrieve Multiply MSBs (Rd = MSBs)
6'b100001: alusum = {1'b0, Rs1 >> Rs2}; // LSR Logical Shift Right (Rd = Rs1 shifted right by value of Rs2)
6'b100010: alusum = {Rs1[15], Rs1 >>> Rs2}; // ASR Arithmetic Shift Right (Rd = Rs1 shifted right by value of Rs2, maintaining sign bit) 6'b100000: alusum = {1'b0, Rs1 << Rs2}; // LSL Logical Shift Left (Rd = Rs1 shifted left by value of Rs2)
6'b100011: ; 6'b100001: alusum = {1'b0, Rs1 >> Rs2}; // LSR Logical Shift Right (Rd = Rs1 shifted right by value of Rs2)
6'b100010: alusum = {Rs1[15], Rs1 >>> Rs2}; // ASR Arithmetic Shift Right (Rd = Rs1 shifted right by value of Rs2, maintaining sign bit)
6'b100100: alusum = {1'b0, (Rs1 >> Rs2[3:0]) | (Rs1 << (16 - Rs2[3:0]))}; // ROR Shift Right Loop (Rd = Rs1 shifted right by Rs2, but Rs1[0] -> Rs1[15]) 6'b100011: ;
6'b100101: alusum = ({Rs1, carryin} >> Rs2[3:0]) | ({Rs1, carryin} << (17 - (Rs2 % 17)));// RRC Shift Right Loop w/ Carry (Rd = Rs1 shifted right by Rs2, but Rs1[0] -> Carry & Carry -> Rs1[15])
6'b100110: ; 6'b100100: alusum = {1'b0, (Rs1 >> Rs2[3:0]) | (Rs1 << (16 - Rs2[3:0]))}; // ROR Shift Right Loop (Rd = Rs1 shifted right by Rs2, but Rs1[0] -> Rs1[15])
6'b100111: ; 6'b100101: alusum = ({Rs1, carryin} >> (Rs2 % 17)) | ({Rs1, carryin} << (17 - (Rs2 % 17)));// RRC Shift Right Loop w/ Carry (Rd = Rs1 shifted right by Rs2, but Rs1[0] -> Carry & Carry -> Rs1[15])
6'b100110: ;
6'b111110: ; // NOP No Operation (Do Nothing for a cycle) 6'b100111: ;
6'b111111: ; // STP Stop (Program Ends)
6'b111110: ; // NOP No Operation (Do Nothing for a cycle)
default: ; // During Load & Store as well as undefined opcodes 6'b111111: ; // STP Stop (Program Ends)
endcase;
default: ; // During Load & Store as well as undefined opcodes
endcase;
end
else
begin
alusum = {1'b0, 16'h0000}; // Bring output low during Load/Store so it does not interfere
end
end end
/* /*