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Abstract 

The StackSynth module is an educational synthesiser platform based on the STM32L432, 

an ARM Cortex-M4 based CPU, which is well suited for the low-level realtime programming 

learning objective of the Embedded Systems module. However, it is not optimised for the 

Digital Signal Processing operations needed for complex audio waveform generation. 

This project develops an FPGA-based extension module for StackSynth, with the purpose of 

increasing the audio ability and performance of the synthesiser, while offering future 

Embedded Systems students an opportunity to develop code for a RISC-V System-on-Chip. 

The main contribution of this project is the SystemVerilog modules and LiteX wrappers for 

receiving low-speed CAN frames, producing waveforms for a given frequency, converting 

from phase to a sine wave and driving the PCM1780 DAC audio / control ports. In addition, 

there are demo C++ programs and helper functions for interfacing with the custom logic 

and finally, integration of these custom logic blocks into a LiteX project that facilitates the 

use of the existing IP for the CPU, memory controller, USB controller and serial interfaces. 

The API for controlling the custom SystemVerilog logic has been designed to be simple to 

implement within student written FreeRTOS tasks, similar to the existing Embedded 

Systems Module coursework C++ architecture. 
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1 Introduction 

The 3rd Year Embedded Systems course of the Electrical Engineering department at 

Imperial College London includes a coursework designed to teach students real-time 

programming in a resource constrained system. The scenario of the coursework is a music 

synthesiser where audio samples must be generated consistently to ensure audio without 

glitches. 

This project aims to extend the capabilities and performance of the existing educational 

platform as the microcontroller currently used in the coursework is limited to a small 

number of oscillators and basic audio effects. A key factor in the success of this project is 

that a student should be able to interact with the provided gateware in a similar manner to 

the existing coursework. 

This project provides code for the gateware needed to run user-written programs, receive 

communications from CAN protocol devices and produce audio waveforms consisting of 64 

individual waves of specified frequencies, as well as demonstration software to control the 

provided gateware via CAN frames or direct control via a console interface. 

1.1 Report Structure 

The report is structured as follows: 

• Chapter 2 - Background - Determines the project base and goals and introduces 

aspects of the project that are pre-determined, including the FPGA used and 

external components present on the StackSynth Extension board. 

• Chapter 3 - Analysis and Design - Lays out the architecture of the system and 

connections between modules. 

• Chapter 4 - Implementation - Details the design decisions made during 

development and features of the project as completed. 

• Chapter 5 - Testing and Results - Covers testing throughout the project used to 

verify functional correctness of the design and measure performance. 

• Chapter 6 - Evaluation - Evaluates the project on progress against the identified 

objectives and areas that can be improved. 

• Chapter 7 - Conclusions - Concludes the project, including insights into future 

work. 
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2 Background 

This section goes over the research and existing work that this project builds upon, as well 

as key aspects of the project that inform the analysis and design stages. The sub-sections 

focus on the StackSynth module, OrangeCrab board, LiteX framework, PCM1780 DAC, CAN 

bus and ATA6561 transceiver. 

2.1 Requirements Capture 

The aim of this project is to extend the existing StackSynth platform that is used in the 3rd 

Year Embedded Systems [1] with an FPGA accelerator to increase the audio performance 

and capabilities of the StackSynth educational platform. The key motivators are to allow for 

many more oscillators than is possible on the ST Nucleo L432KC as well as advanced effects 

such as equalisation with multiple filter taps, as the available time for generating samples 

on the L432KC is limited due to strict deadlines for sample timing to prevent audible 

glitches. 

The original brief mentions that using an FPGA would allow for “hundreds” of simultaneous 

oscillators and filter taps, however the maximum number of oscillators and filter taps is 

likely to be limited by the available logic on the FPGA fabric, as the selected model of FPGA 

has 24,000 LUTs (look-up tables) to create logic blocks from. This is discussed later in the 

FPGA Utilisation section. The brief also states that “a professional-grade sample rate and 

resolution” should be achievable, so the industry standard for “CD-quality” is used as a 

baseline giving a target of 16-bit 44.1kHz output, as higher bit depth and sampling rate is 

often not perceived. 

As the end goal is to have an educational aid, there are some quantitative targets for 

usability. Using the FPGA accelerator should be an extension of the existing coursework, 

with difficulty caused by intentional complexity of the project, not from implementation 

details that cannot be changed by the student. The syllabus for the embedded systems 

module [1] states learning objective including low-level communication, real-time 

constraint analysis, interrupts and multi-threading. The FPGA extension will allow students 

to program an embedded SoC and develop code to communicate with the main StackSynth 

boards, using interrupt service routines and handlers. 

The embedded SoC will run student developed code which handles various tasks including 

communication with other StackSynth modules via the CAN bus, controlling the oscillators 

and filter taps and processing of slower loops such as low-frequency oscillators and other 

effects over longer periods of time. The digital logic blocks to be developed in this project 

are the CAN receiver, sample generator and blocks to drive the various buses to control the 

onboard DAC and amplifier. 
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The core contributions of this project are the following: 

• Quarter-wave sine wave approximation CORDIC SystemVerilog module and multi-

wave generator LiteX module. 

• PCM1780 Audio driver and Mode Control SystemVerilog and LiteX modules. 

• CAN receiver SystemVerilog and LiteX module, used to receive and acknowledge 

CAN frames from StackSynth boards. 

• LiteX project including hardware interrupts, which can be used as a base for further 

development. 

• Demo code including programs and helper functions for interacting with custom 

modules from software. 

2.2 StackSynth Board 

The StackSynth board is part of an educational platform designed to teach real-time 

programming in the situation of a music synthesiser and is part of the 3rd Year Embedded 

Systems module. It utilises the PlatformIO framework [2] which provides the HAL 

(Hardware Abstraction Layer) and a port of the Arduino Framework (Stm32duino [3]) 

which allows for easier control of external pins of the microcontroller. 

A music synthesizer is a good demonstration of real-time programming and prioritisation 

of work, as latency in an audio stream is less important than interval consistency of audio 

samples, resulting in strict deadlines for sample generation. The StackSynth board uses a 

Nucleo STM32L432KC [4] board. which has an ARM Cortex-M4 core, as well as 11 timers 

with varying precision and uses, and direct support for the CAN protocol in the provided 

HAL as detailed in section 3.29 of the datasheet [5]. The timers are especially helpful for 

setting task interval initiation interrupts, pre-empting lower priority tasks so that 

deadlines are not missed. 

The ARM Cortex-M4 core has support for some DSP (digital signal processing) instructions, 

as defined in Table 3-2, ARM Cortex-M4 DSP Instructions [6], however these are not 

optimised for operating on many samples in parallel or for the complex DSP operations of 

an equaliser filter tap. FPGA logic operates simultaneously each clock cycle, so can operate 

on every sample at once in a pipeline reducing the latency of audio effects. 

Communication on the CAN bus will still be done on the StackSynth module, including note 

down and note up events, defined by sending P or R in byte 0 of the CAN frame respectively, 

in addition to student-defined messages such as waveform and filter settings if controlled 

from a StackSynth module. 
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2.3 StackSynth FPGA Extension Board 

Audio sample generation is subsequently handled on the FPGA extension board where 

students will decode their CAN messages on the embedded SoC and then control the 

oscillators and filters. The extension board has headers for attaching the OrangeCrab FPGA 

module and a few chips along with passive components for tasks not handled within the 

FPGA. 

A Microchip ATA6561 CAN Transceiver along with connectors along the sides of the board 

allow for detection of and communication with other StackSynth modules via the CAN bus. 

The transceiver handles conversion from high and low logic states to recessive and 

dominant states on the CANH and CANL pins and is discussed in more detail in the 

ATA6561 CAN Transceiver section. 

A Texas Instruments PCM1780 DAC is connected to the FPGA GPIO pins, with the output 

connected to one 3.5mm headphone port and the input of an Analog Devices DS1881E-

050+ [7] digital potentiometer which is used to adjust the amplitude of the analogue 

waveform providing volume control. This waveform is the input to a TS482IST [8] 100mW 

stereo amplifier which provides enough amplification and power to drive low impedance 

speakers and headphones via a second 3.5mm headphone port. 

2.4 OrangeCrab Board 

The OrangeCrab [9] is a development board built around the LFE5U-25F and LFE5U-85F, 

which are part of the Lattice Semiconductor ECP5 family of FPGAs. For this project, the 

LFE5U-25F model of the OrangeCrab was used due to limited availability and increased 

cost of the larger FPGA model. The specifications of the LFE5U-25F are as follows: 24,000 

LUTs, 1008Kb of embedded Block RAM, 194kb of distributed RAM, 28 18-bit multipliers 

and 2 PLLs. The OrangeCrab also includes 128Mb of non-volatile QSPI flash used for storing 

the bootloader/bitstreams/user-firmware, a MicroSD card slot and a 48MHz oscillator 

used as a source for the system-clock PLL. 

The OrangeCrab follows the Adafruit Feather [10] form factor, making it physically 

compatible with FeatherWings which are stackable expansion boards for Feather boards. 

This means the OrangeCrab could be swapped out for a more powerful board using the 

same pin layout if required in the future. Various FPGA pins are routed to the external pins 

of the board, allowing for direct connections from a design to external devices, which will 

be used in this project to communicate with the ATA6561 CAN Transceiver, PCM1780 DAC 

and TS482IST digital potentiometer. 

The OrangeCrab hardware is released as open source under the CERN Open Hardware 

Licence v1.2, along with firmware released under the MIT Licence in the GitHub Repository 
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[11]. Bitstreams for flashing the FPGA can be created with either Lattice Semiconductor’s 

Diamond IDE or the open-source Project Trellis [12] toolchain which uses Yosys for 

synthesis and nextpnr for placement and routing. Gateware and software examples are also 

provided in another GitHub Repository [13]. 

The r0.2.1 board also features a USB-C port connected directly to pins on the FPGA, 

allowing a design to present itself to USB hosts as a DFU (Device Firmware Upgrade), TTY 

(Teletype), CDC (Communications Device Class), ACM (Abstract Control Model) or even a 

composite USB device. Along with the pre-flashed bootloader, which presents a DFU 

endpoint, the OrangeCrab can be flashed without an external programmer. 

The USB port operates at USB 2.0 Full Speed (12Mbps) as higher speeds are not possible on 

the ECP5. It can be used in user designs by instantiating a USB core, and the demo program 

uses ValentyUSB [14], enumerating as a CDC-ACM device, which results in a COM port on 

Windows and /dev/ttyACMx on Linux. 

2.5 LiteX Framework 

LiteX is a framework for creating FPGA cores and complex SoCs, using many provided cores 

such as CPUs, DRAM interfaces and protocol buses, e.g., Wishbone, AXI, Avalon. LiteX is 

used in this project as it provides many useful cores and makes connecting different blocks 

together easier, reducing the time taken for this project to reach a working Proof of 

Concept. 

LiteX has support for a large range of boards, and the creator of the OrangeCrab added 

support in litex-hub/litex-boards, PR #59 [15], including the necessary pin definitions and 

Project Trellis [12] toolchain steps for creating the bitstream for the OrangeCrab r0.2(.1) 

used in this project with Yosys and nextpnr targeting the Lattice Semiconductor ECP5. 

The LiteX project initially built upon Migen [16], so many of the Migen cores are still 

available and the overall method of defining modules, synchronous and combinatorial logic 

remains in line with Migen. Migen - and by extension LiteX - is a DSL (Domain Specific 

Language) using Python and the dictionary nature of all variables to provide terse syntax 

for defining logic. This syntax is shown in Listing 1. 

self.delay = Signal() 
self.delay1 = Signal() 
self.comb += self.delay1.eq(self.delay + 1) 
self.sync += self.delay.eq(self.delay1) 

Listing 1: Examples of defining combinatorial and synchronous logic in LiteX 

After defining logic and instantiating blocks within a design, the provided Builder() 

function iterates through the map of the defined BaseSoC object and converts the design to 
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a Verilog file representing the full design. The resulting Verilog file has ports for 

connections to external pins, defined in the Pin Constraints File, and is synthesised using 

Yosys, along with any SystemVerilog and Verilog files instantiated within the design using 

the Instance() function. An example of this is shown in Listing 2, taken from 

modules/testPropagation.py [17] where the saw2sin module is instantiated. 

self.i_saw = Signal(16) 
self.o_sin = Signal(16) 
self.specials += Instance("saw2sin", 
    i_i_clk = ClockSignal(), 
    i_i_saw = self.i_saw, 
    o_o_sin = self.o_sin, 
) 

Listing 2: Example using the Instance() function 

The key components of LiteX used in this project are: 

• GSD_OrangeCrab.Platform: defines connections from external FPGA pins to 

peripherals, e.g., the QSPI flash, DDR3L RAM and board GPIO, as well as required 

blocks such as clock sources, PLLs, the CPU and the USB PHY for serial 

communication. 

• ClockDomain: creates a new clock domain, used for the DAC system clock, driven at 

36.864MHz as indicated in the PCM1780 datasheet for a 48kHz sample rate. 

• Subsignal: defines collections of signals for easier pin assignment within modules. 

• LiteScopeAnalyzer: a logic analyser placed alongside the SoC, sampling any 

selected signals within the design at the system clock frequency, with values stored 

in Block RAM and converted a VCD waveform file which can be viewed in GTKWave. 

• Builder: converts the design object to a Verilog module and invokes Yosys and 

nextpnr to synthesize and generate the FPGA bitstream. 

• Module: creates a custom module that can be instanced and added as a submodule to 

other modules or the BaseSoC. 

• ModuleDoc: inheriting from this class results in the class docstring being used in the 

autogenerated documentation, allowing the documentation of a module to be placed 

alongside the module definition. 

• CSRStorage: register object that is read/write from the CPU and read-only from 

custom logic. 

• CSRStatus: register object that is read-only from the CPU and driven from custom 

logic. 

• AutoCSR: inheriting from this class adds all detected CSRStorage and CSRStatus 

blocks within a module to the CSR bus, providing preprocessor definitions for 
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register addresses as well as functions to read/write to the registers or individual 

fields within the registers. 

• Instance: creates an instance of an external Verilog or SystemVerilog module, 

including connections from the module ports to the LiteX design. 

• AsyncFIFO: core from the Migen library with read and write ports that can be in 

different clock domains. Grey code is used to prevent metastability issues in the full 

and empty flags. It is used to transfer generated samples from the system clock 

domain at 48MHz to the DAC clock domain at 36.864MHz. 

2.6 PCM1780 DAC 

The PCM1780 [18] is a 2 channel DAC supporting 16-24bit samples at a 8-192kHz sampling 

frequency. Audio samples can be input via I2S, right-justified or left-justified formats, and 

separate buses are used for transferring audio samples or controlling the mode settings of 

the DAC. The PCM1780 is used in this project to provide superior audio quality than other 

methods of outputting audio from the FPGA, such as PWM (Pulse Width Modulation). 

The PCM1780 settings are controlled via a 3-wire SPI-like interface, with a chip-select, 

clock and data-in pin. No data is ever read from the DAC, so the data-out pin is not present. 

The available settings are shown in Table 1, taken from “Table 5. User-Programmable Mode 

Controls” of the datasheet [19]. 

Function Reset Default Register Bit(s) 

Digital attenuation control 0 dB, no attenuation 16 + 17 AT1[7:0], 

AT2[7:0] 

Soft mute control Mute disabled 18 MUT[2:0] 

Oversampling rate control ×64, ×32, ×16 18 OVER 

Soft reset control Reset disabled 18 SRST 

DAC operation control DAC1 and DAC2 enabled 19 DAC[2:1] 

De-emphasis function control De-emphasis disabled 19 DM12 

De-emphasis sample rate 

selection 

44.1 kHz 19 DMF[1:0] 

Audio data format control 24-bit, left-justified 20 FMT[2:0] 

Digital filter rolloff control Sharp rolloff 20 FLT 

Digital attenuation mode select 0 to –63 dB, 0.5 dB/step 21 DAMS 

Output phase select Normal Phase 22 DREV 

Zero-flag polarity select High 22 ZREV 
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Function Reset Default Register Bit(s) 

Zero-flag function select L-, R-channels 

independent 

22 AZRO 

Table 1: PCM1780 User-adjustable Settings 

The default settings for the PCM1780 are ideal for this project, though the digital 

attenuation may be used as another point of volume control, possibly to normalise the 

output volume regardless of the number of oscillators that are active. As such the only 

settings that need to be modified are the attenuation level for the left and right channels. 

The default settings also include the audio sample format of left-justified, which allows for 

flexibility of the sample depth as a 16-bit sample is equivalent to a 24-bit sample where the 

low 8 bits are 0. To give this output, a shift register can be used to output the sample bit by 

bit, updated on the falling edge of the bit clock as shown in Appendix 10.1, from “Figure 22. 

Audio Data Input Formats” of the datasheet [19]. The bit clock can run at 32x, 48x or 64x 

the sampling frequency and can be selected for easier implementation within the 

SystemVerilog design, though the bit depth is limited by lower bit clock frequencies. 

The timing diagram of the control interface is shown in Figure 1, from “Figure 26. Control 

Interface Timing” of the datasheet [19]. In the figure, MC pulse cycle time limits the 

maximum frequency of the clock signal, and the value of 100ns results in a maximum 

frequency of 10MHz. As the OrangeCrab has a 48MHz system clock, a 6MHz clock signal can 

be generated using a 1:8 clock divider, simplifying the design and reducing delay / clock 

skew. The timing diagram also shows setup and hold time requirements for the data signal. 
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Figure 1: PCM1780 Control Interface Timing Diagram 

The data to be sent will be crossing from a 48MHz clock domain into a 6MHz clock domain, 

but as the latter is derived from the former using logic, there is no risk of a change in phase 

and metastability can be avoided by holding the value stable in the faster domain for 

multiple clock cycles and buffering the value in the slower domain. In this design, the value 

can be left constant until a new value is set as the action of setting the attenuation value is 

idempotent and does not have a side-effect from being repeated. 

2.7 CAN Bus 

The CAN (Controller Area Network) bus is a differential serial bus used for communication 

between devices, typically in automotive applications due to its ability to withstand 

electromagnetic interference and wiring simplicity requiring only a twisted pair of wires 

common to all devices on the bus. The Wikipedia page [20] for the CAN bus provides an 

overview including key features of the protocol, however for timing and implementation 

specifics, the Bosch CAN Specification 2.0 [21] and Texas Instruments: Introduction to CAN 

[22] documents were used as reference material. 

The CAN bus is a multi-master bus, so any device can transmit at any time. In order to 

prevent collisions and loss of data, a form of arbitration is used to select which device has 

priority. This is done by assigning each message a unique ID, and the device with the lowest 

ID wins arbitration. This is inherent to the design of the CAN bus as transmitting a 0 is done 

by asserting the dominant state on the CANH and CANL signals and each device measures 



 
 

19 
 

the state of the bus to determine if it should stop transmitting, so a device transmitting a 

recessive state will still be able to detect the dominant state. This is shown in Figure 2, 

where device A uses a lower ID than device B and so device B stops transmitting when it 

detects the dominant state on the bus at the red cross. 

 

Figure 2: CAN bus arbitration, where A sends a frame with a lower ID and wins arbitration. 

In this project, low-speed CAN is used as the data to be transferred between devices is a 

few bytes at a time and limited by the student code on each StackSynth module. In addition, 

the length of the CAN bus is determined by how many StackSynth devices are chained 

together, resulting in ~15cm per module so electromagnetic interference is unlikely to be 

an issue. On the StackSynth FPGA Extension board, the CAN bus signalling is handled by a 

Microchip ATA6561 Transceiver, as detailed in the ATA6561 CAN Transceiver section. 

Two key features of low-speed CAN are: a bit rate of 125k baud, resulting in ~8us per bit 

for propagation and sampling across the bus or 384 cycles at the 48MHz system clock of 

the OrangeCrab; and differential signalling, where the exact voltage levels of CANH and 

CANL are not important, but the polarity of the difference between the two signals (CANH - 

CANL) is used to determine the state of the bus, further reducing the impact of 

electromagnetic interference. 

An important requirement of all CAN variants is that each frame must be acknowledged by 

at least one other device on the bus, otherwise the transmitting device may choose to 

retransmit the frame indefinitely or enter an error state. In the case of the StackSynth 

module, this results in the user-program CAN transmit queue being full, and the program 

blocking when attempting to add a new transmit message to the queue. The ATA6561 

Transceiver does not contain any logic for automatically acknowledging frames, so the ACK 

signal must be generated within the FPGA logic. This is done by checking the ID of the 

received frame against a CAN receive ID filter after masking with a filter ID mask, and then 
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driving the bus to a dominant state during the ACK bit of the frame if the frame is valid. 

Figure 3, from “Section 3.1.1 Data Frame” of the Bosch CAN Specification 2.0 [21] 

document, shows the ACK slot where a receiver transmits a dominant state overriding the 

transmitters recessive state. 

 

Figure 3: CAN frame format of ACK field. 

The CAN Specification also indicates that the bus should be sampled at 75% of the “bit 

time”, or 6us into a bit for a 8us period in low-speed CAN. This precise timing is maintained 

by synchronising every device on the CAN bus with each incoming recessive to dominant 

transmission. This occurs at the start of each frame as well as throughout the frame, at least 

as often as every 10 bits due to the presence of stuffed bits, preventing a build-up of clock 

skew and errors in sampled bits. 

The CAN protocol is a NRZ (Non-Return-to-Zero) protocol, meaning consecutive bits of the 

same polarity result in no change in the bus state. If many consecutive bits of the same 

polarity were transmitted, this could result in devices losing synchronisation with each 

other if there were differences in internal clock frequencies and timing. To prevent this, bit 

stuffing is used, where extra bits of opposing polarity are added after a sequence of 

consecutive bits of the same polarity, with stuffed bits counting towards the sequence of 

consecutive bits. In CAN, a stuffed bit is added after 5 consecutive bits of the same polarity, 

so a stuffed bit can occur after every 4 non-stuffed bits. This is shown in Listing 3, where a 

sequence of 10 bits is stuffed to a length of 12 bits, with the 6th and 11th bits being stuffed 

bits indicated in red. An error occurs on the CAN bus if 6 consecutive bits of the same 

polarity are detected, except for the End-Of-Frame marker which has no stuffed bits and is 

always 7 consecutive 1s.  

0000011110 → 000001111100 

Listing 3: Example of bit stuffing, where the red bits are stuffed bits added to the sequence 
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A complete CAN bus frame is shown in Figure 4, from the CAN bus Wikipedia page [20], 

where the frame ID is 0x14 and the frame contains 1 byte of data. In the case of the 

StackSynth module, the data length is hardcoded to 8 bytes within the CAN helper library, 

with unused bytes being ignored by the receiving device. 

 

Figure 4: CAN Frame format, this frame contains 1 byte of data 

In addition to the frame ID, data length and data bytes, the CAN frame also contains a CRC 

(Cyclic Redundancy Check) field which allows for detection of errors in the received frame. 

This is calculated using the generator polynomial 𝑥15 + 𝑥14 + 𝑥10 + 𝑥8 + 𝑥7 + 𝑥4 + 𝑥3 + 1 

as prescribed in the Bosch CAN Specification 2.0 [21] with the input sequence of the Start-

Of-Frame, Frame ID, Control Field (ID extension bit, reserved bit and data length code) and 

Data Field. As described in the CAN specification, this can be implemented using a shift 

register with an XOR with 0x4599 when the next incoming bit is high. The CRC is then 

transmitted in the CRC field of the CAN frame, and the receiving device can calculate the 

CRC of the received frame and compare it to the received CRC to determine if the frame is 

valid. If the CRC is not valid, the frame is discarded, and the receiving device does not 

acknowledge the frame. 

2.8 ATA6561 CAN Transceiver 

The Microchip ATA6561 [23] is a CAN and CAN-FD capable Transceiver chip that provides 

a physical interface from a CAN protocol controller to the CANH and CANL pins as well as 

protection against ESD and other faults on the CAN bus such as electrical short-circuits that 

could occur when (dis-)connecting StackSynth modules. It is used to convert CAN protocol 

bits from the FPGA to differential signals required on the CAN bus and includes support for 

3.3/5V tolerant inputs and outputs, allowing direct connections to microcontroller or FPGA 

external pins without level shifting. This direct connection is possible due to the STBY and 

TXD inputs being connected to the VIO pin via internal pull-up resistors and the RXD output 

being driven from VIO via a pair of MOSFETs as shown in Figure 5, taken the Functional 

Block Diagram on page 3 of the ATA6561 datasheet [24]. 
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Figure 5: ATA6561 Functional Block Diagram 

The ATA6561 also provides protection to the CAN bus from the CAN controller in two key 

situations. First, if the RXD pin is driven high externally, such as an accidental logic-high 

output from the FPGA or a short-circuit to VCC, this represents a recessive state and would 

prevent a CAN controller from detecting a dominant state on the CAN bus, causing 

arbitration to fail. Second, if the TXD pin is driven low for longer than the TXD dominant 

timeout, the CANH and CANL pins are disconnected (high impedance) as driving a constant 

dominant state on the CAN bus would block all other network communication. This timeout 

is reset when the TXD pin is driven to logic high. 

The transceiver has 4 operating modes, however only Normal mode is used, as this allows 

for monitoring of the CAN bus via the RXD pin, and driving the CAN bus to the dominant 

state when TXD is driven low, such as for acknowledging a received frame. The other 
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modes are Unpowered, Standby and Silent, which are either not useful in operation, or in 

the case of Silent, is not accessible on the ATA6561 by the user, and only occurs when an 

error is detected on the CAN bus. Finally, the ATA6561 is a clockless and combinatorial 

device, and can be treated as a direct connection from the FPGA to the CAN bus. The FPGA 

logic keeps track of bit timing and drives the TXD pin as needed. 

3 Analysis and Design 

This section presents a high-level overview of the design of the system, and details design 

decisions that apply to the overall system rather than a specific area of implementation. 

Changes that were made to the design during implementation are discussed in the 

Implementation section. 

Figure 6vis a block diagram representation of the StackSynth FPGA Extension board 

including SoC and external Integrated Circuit components that are integral to the project 

function. Dotted lines represent analogue signals, which includes the stereo audio signals 

from the PCM1780 DAC, through the DS1881E digital potentiometer and through the 

TS482 amplifier and 3.5mm headphone port. Thinner solid lines are single bit digital 

signals, including clock signals and serial bit connections, while thicker solid lines are 

multi-bit digital signals or buses, including UART and the CSR bus. Later in the project, the 

VexRiscV CPU was replaced with a PicoRV32 CPU for testing a basic software 

implementation of interrupts, however the overall architecture of the system remained 

unchanged. 

The block diagram is also colour coded to represent the different areas of the system, with 

physical components confirmed at the start of the project in red, parts of the OrangeCrab in 

orange, LiteX provided modules on the FPGA in blue, and modules created in this project in 

green. The FTDI USB to UART adapter is shown in the diagram as it is used to download 

traces from the LiteScope Analyzer, however it was not provided as part of the project and 

is external to the StackSynth FPGA Extension board. 
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Figure 6: System Architecture Overview 
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System Architecture Overview 

In Figure 6, the Wave Sample Generator Block represents a conversion from settings 

controlled from the CPU via the CSR bus to the final output samples sent to the DAC. A key 

design decision within this block is the generation of sample values when required without 

the use of a large wavetable. The OrangeCrab has limited Block RAM and a large memory 

would be required to provide the resolution desired for phase to sine wave conversion, for 

example, using a 16-bit phase to index a table with 2^16 or 65536 entries would require 

1049Kb of Block RAM, more than the 1008Kb available on the ECP5 model used. Instead, a 

larger phase accumulator can be used, allowing for more precise phase steps providing 

better accuracy as the error is smaller, and minor errors due to rounding are averaged out 

over multiple cycles, reducing the likelihood of audible glitches. This phase accumulator 

can then be truncated to 16 bits by ignoring the lower 8 bits and used for sample 

generation. Figure 7 shows the submodules within the Wave Sample Generator Block, 

including the CORDIC and GenerateWave modules. 

 

Figure 7: Wave Sample Generator Block internal structure 

The Async FIFO block handles the transfer of generated samples from the system 48MHz 

clock domain to the 36.864MHz DAC clock domain, as the write port is driven by the 

system clock and the read port is driven by the DAC clock. This block is required as the DAC 

clock is not a multiple of the system clock, nor does it divide from the system clock, so 

multiple buffers may not prevent metastability. The samples are then fed into the DAC 

Driver which uses an internal counter to generate the bit clock at 2.304MHz and left-right 

clock at 48kHz. 

The final major design choice in this project is to use SystemVerilog (IEEE 1800-2017), 

including constructs such as always_comb and always_ff blocks over Verilog always blocks 

and logic over wire or reg. This choice was made for a number of reasons, including the 
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extra compile time checks and readability as the block is immediately identifiable as 

combinatorial or synchronous logic and the ability to use newer open-source tools for 

checking code quality and semantic correctness when writing the required blocks for logic 

not already provided by LiteX. However, the SystemVerilog constructs supported by the 

open-source version of Yosys used in Project Trellis are limited, so the code must still be 

written so that it can be synthesised by Yosys. 

The first tool used is svlint [25], a SystemVerilog linter that provides a large range of 

syntax and style rules with the goal of improving code readability and maintainability, 

including rules to reduce simulation and synthesis errors due to mismatches in intent and 

implementation. The VSCode [26] extension svlint-vscode [27] is a language server 

client and communicates with svls [28], a language server built around svlint, providing 

compatibility with the Language Server Protocol and allowing for in-editor syntax 

highlighting and linting. 

The second tool used is slang [29], a SystemVerilog parser and compiler with 

comprehensive support for the IEEE 1800-2017 SystemVerilog syntax. This tool is used to 

check for syntax errors in the SystemVerilog code as well as semantic errors such as 

mismatches in signal widths and types or invalid variable names including suggestions 

based on existing signals in the current file. An online version is available [30], with an 

editor on the left and a live compiler output on the right, however the tool can also be 

compiled and used offline. 

4 Implementation 

This section details the implementation of the project, with sub-sections covering different 

areas of the final implementation. These sub-sections do not represent the order of 

implementation, but rather logical grouping to keep relevant decision and design aspects 

together. Areas for further work are also briefly discussed, with further detail in the 

Conclusions and Further Work section. The implementation is available in the GitHub 

repository: supleed2/EIE4-FYP [31]. 

4.1 Setting up the LiteX Framework 

As this project is built using the LiteX Framework, the project implementation begins with 

setting up the framework and creating a basic SoC including a custom module and 

connections from the CPU to the module so that the module can be controlled from 

software running on the CPU. A LiteX project consists of a main Python script that creates a 

class instance representing the SoC to be built including all peripherals and sub-modules, 

make.py in this project. This file is based on the gsd_orangecrab.py target file from the 

litex-boards GitHub repository [32], with modifications made to add the custom modules 

https://github.com/dalance/svls
https://github.com/MikePopoloski/slang
file:///C:/Users/suple/Desktop/fyp-writeup/make.py
https://github.com/litex-hub/litex-boards/blob/master/litex_boards/targets/gsd_orangecrab.py
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created as part of this project and debugging tools such as the LiteScope Analyzer. The 

build script uses the OrangeCrab platform class, which defaults to a VexRiscV-Standard 

CPU as the SoC core but can be overridden from the command line with the --cpu-type 

and --cpu-variant flags. 

An initial test of custom module creation was performed by replacing the LiteX-provided 

LedChaser with a custom module that reads a value set from a CSR and outputs the 3 PWM 

signals for the red, green and blue pins of the user_led (LED on the OrangeCrab). The 

TestRgb module creates a CSRStorage memory representing the target RGB value for the 

LED in 24 bit colour, and this register is connected to an input of the ledPwm SystemVerilog 

module where an 8 bit counter increments at the 48MHz system clock and the output is 

high if the target value is greater than the counter value for each LED channel. The three 

output pins are then connected using a comb statement to the LED pin objects within the 

LiteX module, and the SystemVerilog source file is added to the list of sources provided to 

Yosys for synthesis. The LiteX and SystemVerilog modules are included in Listing 4 and 

Listing 5 respectively for reference. 

class TestRgb(Module, AutoCSR, ModuleDoc): 
    """ 
    RGB LED Test Module 
    """ 
    def __init__(self, platform, pads): 
        self.pads = pads 
        self._out = CSRStorage(size = 24, description="Led Output(s) Value", 
        fields = [ 
            CSRField("ledb", size = 8, description = "LED Blue Brightness"), 
            CSRField("ledg", size = 8, description = "LED Green Brightness"), 
            CSRField("ledr", size = 8, description = "LED Red Brightness"), 
        ]) 

 
        leds = Signal(3) 
        self.comb += pads.eq(~leds) 
        self.specials += Instance("ledPwm", 
            i_clk = ClockSignal(), 
            i_rgb = self._out.storage, 
            o_ledr = leds[0], 
            o_ledg = leds[1], 
            o_ledb = leds[2] 
        ) 
        platform.add_source("rtl/ledPwm.sv") 

Listing 4: TestRgb LiteX Module 

file:///C:/Users/suple/Desktop/fyp-writeup/modules/testRGB.py
file:///C:/Users/suple/Desktop/fyp-writeup/rtl/ledPwm.sv
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`default_nettype none 

 
module ledPwm 
( input  var        clk 
, input  var [23:0] rgb 
, output var        ledr 
, output var        ledg 
, output var        ledb 
); 

 
logic [7:0] counter; 

 
always_ff @(posedge clk) 
  counter <= counter + 1; 

 
always_comb ledr = (rgb[23:16] > counter); 
always_comb ledg = (rgb[15: 8] > counter); 
always_comb ledb = (rgb[ 7: 0] > counter); 

 
endmodule 

Listing 5: ledPwm SystemVerilog Module 

To test this module, the generated functions in generated/csr.h of the build output 

directory provide convenient functions for reading from and writing to CSR locations. The 

demo program [33] has a function void leds_cmd(char** val) which allows the value of 

the CSR to be updated from the Serial Console that is accessible when the OrangeCrab is 

connected to a computer via USB. While testing this module resulted in immediately 

noticeable changes in the output colour of the LED, adding a reset pin caused the design to 

stop working, and further testing revealed the cause to be a mismatch in active-high vs 

active-low logic. 

The SystemVerilog module was designed with an active-low reset, as this is commonly used 

in FPGA and ASIC designs, as an active-low reset will be automatically triggered as a device 

is powered on. However, the ResetSignal() function within LiteX provides access to an 

active-high reset, so the SystemVerilog block would be held in the reset state indefinitely. 

This could either be fixed by changing the SystemVerilog module to use an active-high 

reset, or by inverting the reset signal as it connects to the module using the Python 

inversion operator. The latter was chosen as it allows the SystemVerilog modules to match 

the norm of active-low resets and the reset connection was written as ~ResetSignal(). 

Also of note in Listing 4 is the pads input of the module, as this is a dictionary containing 

the external pin definitions used to connect to the user_led. This dictionary is created by 
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requesting a port from the platform object and is shown in Listing 6 where the pins are 

requested together and Listing 7 where the pins and the logic standard used is defined in 

the OrangeCrab platform. 

self.leds = TestRgb( 
    platform = platform, 
    pads     = platform.request_all("user_led") 
) 

Listing 6: Request user_led pins from platform in definition of TestRgb 

("user_led", 0, Pins("K4"), IOStandard("LVCMOS33")), # rgb_led.r 
("user_led", 1, Pins("M3"), IOStandard("LVCMOS33")), # rgb_led.g 

("user_led", 2, Pins("J3"), IOStandard("LVCMOS33")), # rgb_led.b 

Listing 7: Definition of user_led pins in OrangeCrab platform 

4.2 Generating Audio Samples 

This section covers the Wave Sample Generator Block mentioned in the Analysis and 

Design section, which corresponds the LiteX GenerateWave [34] module in the project files. 

Audio samples are created in the system and main 48MHz clock domain. This is done to 

allow the samples to be generated at a higher frequency than the audio sample rate and 

allows the values of the CSRs to be directly read by the SystemVerilog sub-modules without 

the need for a clock domain crossing or synchronisation to prevent glitches. The LiteX 

module contains three CSRStorage slots for controlling the oscillators: an oscillator index 

to select which oscillator to modify, the target frequency of the selected oscillator, and the 

waveform of the selected oscillator from sawtooth, square, triangle or sine. When either the 

target frequency or waveform CSR is written to by the CPU, a pulse is created indicating the 

respective setting was written to. Depending on which pulse is detected, the genWave 

SystemVerilog module updates the internal settings for the oscillator indicated by the index 

CSR for either the target frequency or waveform. 

4.2.1 Phase-Step Calculation 

These target frequencies are then converted to phase step values for a 24-bit phase 

accumulator that increments at the sampling frequency of 48kHz. A 48kHz clock is created 

using a clock divider driven by the system 48MHz clock and is used as it is a common 

sampling frequency, higher than the standard “CD-quality” sampling rate and allows for 

1000 cycles per sample for calculation of each sample. The phase step values for each 

oscillator are updated from the target frequency values sequentially, and as these updates 

are done at one oscillator per cycle, the phase step values are updated within the time for 

one sample, resulting in a maximum increase in latency of one sample for changes to target 

frequency. This change allows for one multiplier block to be shared rather than using one 
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per oscillator, which would limit the number of oscillators as the Lattice LFE5U-25F has 28 

multipliers. The equation used to calculate the phase step value is shown in Listing 8, 

where 224 is the number of values possible in the 24-bit phase step calculation, and 48000 

is the sampling frequency. 

Phase Step =
224

48000
× Target Frequency ≈ 349.525. . .× Target Frequency 

Listing 8: Equation for calculating phase step values 

Listing 9 shows the SystemVerilog implementation of this equation, where the 

multiplication is approximated with a multiplication by 699 followed by a shift right to 

divide by 2. The value is shifted another 8 bits to truncate the 24-bit value to a 16 bit value 

used in the remaining logic, however this step could be removed if the phase accumulator 

was extended to 24 bits. 

logic [23:0] int_phase_step; // Phase step calc from target frequency 
always_comb int_phase_step = (24'd699 * t_freq[ps_clk]); // 699 approx (2^24 

/ 48000) * 2 

 
logic [15:0] phase_step [0:63]; // Shift step right correctly (2^9) 
always_ff @(posedge i_clk48) phase_step[ps_clk] <= {1'b0, int_phase_step[23:9

]}; 

Listing 9: SystemVerilog implementation of phase step calculation 

4.2.2 Phase to Amplitude Conversion 

Once per 48kHz cycle, each phase accumulator is incremented by the respective phase step 

value for that oscillator. Along with the phase to amplitude converter, this forms a 

numerically controlled oscillator. Numerically controlled oscillators are commonly used in 

digital signal processing, PLLs and many radio systems. [35] [36] Key benefits include 

dynamic frequency control and phase adjustment, frequency accuracy and ease of 

implementation. The phase accumulator can be simplified by aligning the overflow point 

with the point where the phase accumulator would be reset to 0, or equivalently, if the 

phase accumulator is stored using N bits, a value of 2^N represents an angle of 360°. 

For the sawtooth, square and triangle waveforms, direct bit-level conversions are used 

from the phase input. Conversion from phase to a sine wave is done in the saw2sin 

SystemVerilog module, which is a wrapper around a quarter wave CORDIC module. The 

cordic SystemVerilog module has a 16-bit phase input which represents phase inputs 0° - 

90°, and outputs a 16 bit amplitude which represents the sine output from 0 to 1. The 

conversion from 0° - 360° to 0° - 90° for input to the CORDIC module is done by the 

saw2sin module, which also converts the quarter wave output into a full wave. Table 2 
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shows the subtraction of the phase input and inversion of the output required to convert 

the quarter wave CORDIC module into a full sine wave, where reversing the input refers to 

65535 − ((𝑥 mod 16384) × 4). 

Table 2: Conversion flags of quarter wave CORDIC module to full wave 

4.2.3 Sine Wave Approximation 

For converting a phase input to a sine amplitude, a CORDIC block is used. An initial attempt 

using a polynomial approximation was tested using a cocotb testbench, similarly to the 

final CORDIC module as explained in the testing section, Phase to Amplitude Conversion. 

This resulted in an accurate amplitude output, and a graph using the Desmos graphing 

calculator [37] is shown in Figure 8, where the polynomial approximation is shown in red 

and overlaps the reference sine wave in blue. The green line shows the final expected 

output from the saw2sin module. Synthesis of this polynomial approximation block 

resulted in 191% utilisation of the TRELLIS_COMB blocks, causing placement to fail. 

 

Figure 8: Polynomial approximation of sine wave, scaled to 16-bit input and output values 

Instead, a CORDIC SystemVerilog module was built while following a ZipCPU blog post on 

Using a CORDIC to calculate sines and cosines in an FPGA [38] for explanations on the ideas 

behind the CORDIC algorithm. The CORDIC module was built to use 16-bit inputs and 

outputs, and the phase input represents a range of 0° - 90°. The cordic SystemVerilog 

Phase Range phase[15] phase[14] Reverse CORDIC Input Negate CORDIC Output 

0° - 90° 0 0 No No 

90° - 180° 0 1 Yes No 

180° - 270° 1 0 No Yes 

270° - 360° 1 1 Yes Yes 
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module was then instantiated within the saw2sin module where it is used to recreate a full 

cycle of the sin wave. 

Initial testing of the CORDIC module revealed that the algorithm was not accurate at 

extreme input values. For very small phase input values, the resulting values were too 

large, and for very large phase input values, the resulting values sometimes decreased as 

the phase increased. The issue at large phase input values was worked around by 

outputting a maximum output value if the input phase was above a certain threshold, 

65508 in this case, as this matched the reference Python function. The issue at small phase 

input values was worked around by implementing a small angle approximation, where the 

output value is equal to 1.5x the input value for inputs below 32. The value of 1.5 was used 

for simplicity in implementation due to needing one right shift and one addition. The 

resulting CORDIC module performed much better and is the version tested in the testing 

section, Phase to Amplitude Conversion, including adjustments to further improve accuracy 

and reduce error. 

This completed saw2sin block now output a full sine wave, however the output was in the 

range of 0 to 65535 but the PCM1780 DAC uses signed values in the range -32768 to 

32767. The effect of this is seen in Figure 9 where the resulting wave is discontinuous. To 

fix this, the MSB of the saw2sin amplitude output was inverted, as this is equivalent to 

adding half the maximum value, and the resulting audio output is shown in Figure 10. 

 

Figure 9: Sine wave output when using unsigned values 
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Figure 10: Sine wave output when using signed values by inverting the MSB 

During testing, glitches in the output wave were discovered. These glitches were likely caused 
by the long critical path due to the combinatorial cordic module, so the output was changed 
to a registered output and the output sampled after multiple cycles. This is discussed further 
in the testing section, Listing 21: SystemVerilog saw2sin module, excerpt of adjusting 
amplitude offsets 

CORDIC propagation delay. 

In addition to using the value of the CORDIC module after multiple cycles, the design was to 

be expanded to multiple simultaneous oscillators, however instantiating a CORDIC module 

for each oscillator would result in wasted logic as the modules would remain unused for 

most cycles out of the 1000 cycles available per 48kHz sample when running at 48MHz. 

To make better use of available resources, a single CORDIC module was instantiated and 

each phase to amplitude conversion done sequentially, in a basic form of time division 

multiplexing. The low 2 bits of a 48MHz counter were used to load the next phase value at 

step 0 and capture the resulting amplitude at step 3. 

4.2.4 Combining Oscillators 

The final stage of generating audio samples involves combining the samples from each 

individual oscillator into a single sample. As a single oscillator already has the maximum 

amplitude, the individual samples are sign extended to 24 bits before being summed into a 

single sample. To maintain a more consistent volume, the final sample is also shifted to the 

right to keep the maximum amplitude within the range of a 16-bit signed value. 

The amount to shift by is calculated as the logarithm base 2 of the number of currently 

active oscillators minus one, so one oscillator is unaffected, two are halved and three or 

four are divided by four. The resulting sample will have a maximum amplitude that is 

between 0.5 and 1 times the maximum amplitude of a single oscillator, depending on the 
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number of active oscillators. The SystemVerilog code for combining the individual samples 

is shown in Listing 10. 

// Add up sign extended samples 
always_comb samples_long[0] = {{8{samples[0][15]}}, samples[0]}; 
for (genvar i = 1; i < 64; i++) begin: l_gen_sample_long 
  always_comb samples_long[i] = samples_long[i-1] + {{8{samples[i][15]}}, sam

ples[i]}; 
end 

 
// Count number of active oscillators 
always_comb waves_count[0] = (phase[0] != 16'd0); 
for (genvar i = 1; i < 64; i++) begin: l_gen_waves_count 
  always_comb waves_count[i] = waves_count[i-1] + (phase[i] != 16'd0); 
end 

 
always_comb wv_cnt_1 = waves_count[63] - 1; // Subtract 1 from wave count 

 
always_comb shift = /* logic to calculate shift amount */; 

 
// Shift output sample right to get normalised output 
always_ff @(posedge i_clk48) samples_sum <= samples_long[63] >> shift; 

 

always_comb o_sample = samples_sum[15:0];    // Truncate output to 16 bits 

Listing 10: Combining individual oscillator samples into a single signed sample 

4.3 Transferring samples across clock domains 

After the signed 16-bit samples have been generated, they must be transferred from the 

48MHz system clock domain to the 36.864MHz DAC clock domain. Table 3 shows Table 1 

from the PCM1780 datasheet [19], where a sampling frequency of 48kHz allows for the 

following DAC system clock frequencies: 6.144MHz, 9.216MHz, 12.288MHz, 18.432MHz, 

24.576MHz, 36.864MHz. Of these, 36.864MHz allows for the greatest number of cycles per 

sample increasing the precision of the DAC driver SystemVerilog module, at 768 cycles per 

sample. The DAC system clock is generated by a PLL primitive block provided by the Lattice 

ECP5 FPGA, which is configured to use the 48MHz system clock as the input clock, and the 

36.864MHz DAC system clock as the output clock. 

Sampling 

Frequency (kHz) System Clock Frequency (MHz) 

x fS 128 192 256 384 512 768 1152 
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Sampling 

Frequency (kHz) System Clock Frequency (MHz) 

8 1.024 1.536 2.048 3.072 4.096 6.144 9.216 

16 2.048 3.072 4.096 6.144 8.192 12.288 18.432 

32 4.096 6.144 8.192 12.288 16.384 24.576 36.864 

44.1 5.6448 8.4672 11.2896 16.9344 22.5792 33.8688 – 

48 6.144 9.216 12.288 18.432 24.576 36.864 – 

88.2 11.2896 16.9344 22.5792 33.8688 – – – 

96 12.288 18.432 24.576 36.864 – – – 

192 24.576 36.864 – – – – – 

Table 3: PCM1780 - Table 1. System Clock Frequencies for Common Audio Sampling 
Frequencies 

Transferring the samples is achieved using an Asynchronous FIFO where the read and 

write ports can be accessed from different clock domains. LiteX provides modules called 

AsyncFIFO and ClockDomainCrossing, however both require a layout parameter, and no 

documentation is present for the format of this parameter so these modules were not used. 

An initial attempt was also made to design an Asynchronous FIFO from scratch following a 

ZipCPU Blog Post on Crossing clock domains with an Asynchronous FIFO [39] however 

further research through the source files of the LiteX project revealed the Migen AsyncFIFO 

[40] module. This module is derived from a _FIFOInterface class alongside documentation 

of the signals that are available and their expected connections to other modules. 

The Migen AsyncFIFO module uses grey counters to keep track of the read and write 

pointers within the FIFO, preventing single bit flips from causing large glitches in the 

pointer values as they cross between the read and write port clock domains. In practice, the 

FIFO will be written to and read from at 48kHz from both clock domains, with large pauses 

between each sample from the perspective of both clock domains. In addition, the LiteX 

report states the frequency of the DAC clock domain is likely to be closer to 36.92MHz 

which means the FIFO will be read more often than it is filled and should never reach the 

full state nor cause the sample generation to stall. The excerpt from the LiteX report is 

shown in Listing 11, where the DAC system clock output is clko2 and the clko0 and clko1 

outputs drive half and double system frequency clocks used for required primitive 

modules. 

INFO:ECP5PLL:Config: 
clko1_freq : 24.00MHz 
clko1_div  : 20 
clko1_phase: 0.00° 
clko0_freq : 96.00MHz 
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clko0_div  : 5 
clko0_phase: 0.00° 
clko2_freq : 36.92MHz 
clko2_div  : 13 
clko2_phase: 0.00° 
vco        : 480.00MHz 

Listing 11: LiteX report excerpt showing DAC clock frequency 

4.4 Driving the DAC (PCM1780) 

The PCM1780 has a 3 wire audio interface, consisting of a bit clock, a left-right clock, and a 

data line. The bit clock indicates when the data line should be sampled for each bit, as the 

value of the data line is updated on the falling edge of the bit clock. For the default left-

justified data format, left-right clock high indicates the current data is for the left channel 

and low indicates the current data is for the right channel. The data is sent MSB first, 

aligned to the falling or rising edge of the left-right clock and falling edge of the bit clock. 

Figure x.y in the background PCM1780 section shows the timing diagram for the default 

left-justified data format. 

In this project, the bit clock is driven at 48 times the sampling frequency or equivalently 

1/16 times the DAC system clock of 36.864MHz giving a frequency of 2.304MHz and is 

generated using a clock divider from the DAC system clock. This allows for 48 bits to be 

transferred in each period of the 48kHz left-right clock, or 24 bit left and right channel 

samples. In this project, the low 8 bits are left as 0s to extend the 16-bit samples from the 

wave generator, however the wave generator can be updated to generate 24 bit samples if 

required. Verification of the DAC driver was performed using the LiteScope Analyzer, 

which is detailed in the LiteScope Analyzer section. 

The PCM1780 mode bus is driven from the dacAttenuation SystemVerilog module as 

attenuation was identified as the only setting that may need to be user-adjustable. This 

module operates in the main 48MHz clock domain and divides the incoming clock by 8 to 

produce a 6MHz clock, which is below the 10MHz limit specified in the PCM1780 datasheet. 

Two shift registers are used to drive the chip select and data pins, shifting out a new value 

on each falling edge of the 6MHz clock signal. These shift registers are reloaded when an 

input valid signal is high, detected by creating a buffer register to hold the signal high for 

long enough to be detected in the slower 6MHz clock domain. An excerpt of the data shift 

register is shown in Listing 12. 

logic [34:0] data; 
always_ff @(negedge o_clock) // Update DATA on falling edge of CLOCK 
  if (!i_rst48_n)    {o_data, data} <= 36'h000000000; 
  else if (valid[7]) {o_data, data} <= {8'd16, volume, 2'd0, 8'd17, volume, 2
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'd0}; 
  else               {o_data, data} <= {data, 1'b0}; 

Listing 12: Excerpt of the dacAttenuation data shift register 

Testing of the design with both the dacDriver and dacAttenuation SystemVerilog modules 

instantiated in the top level design resulted in the design failing to boot. When either 

module is instantiated without the other, the design appears to boot correctly, however 

debugging the design when both modules are present is difficult as the LiteScope Analyzer 

does not function when the design fails to boot. After discussing the issue with the project 

supervisor, it was decided that the dacAttenuation module can be removed from the design 

at this stage as it is not required for a Proof-of-Concept demonstration. 

4.5 Using LiteScope Analyzer 

The LiteScope Analyzer module is added to the design at the end of the BaseSoC class in 

make.py in the main system clock domain. The memory depth is calculated using the length 

of the signals being captured to prevent going over the available DP16KD memory blocks 

as this results in placement failing after elaboration and synthesis has already run. 

LiteScope Analyzer captures every signal on each clock rising edge of the clock domain it is 

instantiated in. For signals that change less often than every cycle, this results in many 

redundant samples being captured. The samplerate variable is only used in writing the 

analyzer.csv file and does not affect the actual sample rate of the module. A custom 

version of the module was created with a clock divider on the clock input to reduce the 

sample rate however this modification caused the design to fail to boot even when using 

the LiteX primitive Counter block and so the original module was used. The memory 

limitation was worked around by reducing the signals captured to the minimum needed for 

debugging or testing logic at a higher frequency before slowing it down to the intended 

frequency after testing. 

The module is also connected to a second Wishbone UART module as a separate connection 

is needed to download the captured waveform data from the FPGA to the host computer for 

viewing. Two unused external pins are used as RX and TX pins for this UART module and 

connected to an FTDI232 USB to serial converter. The baud rate is also increased to 

921600 baud to increase the download speed of the waveform data, which is stored in a 

.vcd file. Listing 13 shows the LiteScopeAnalyzer instance including defining the signals 

to be captured, the capture memory depth and a CSV file containing information about the 

module and signals to be captured. 

self.add_uartbone(name="debug_uart", baudrate=921600) 
from litescope import LiteScopeAnalyzer 
signals = [ 

file:///C:/Users/suple/Desktop/fyp-writeup/make.py
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    self.audio.dac_lrck, 
    self.audio.dac_bck, 
    self.audio.dac_data, 
    # ... other signals to capture 
] 
from math import ceil, floor 
analyzer_depth = floor(190_000 / ((ceil(sum([s.nbits for s in signals]) / 16)

) * 16)) 
self.submodules.analyzer = LiteScopeAnalyzer( 
    analyzer_signals, 
    depth        = analyzer_depth, 
    clock_domain = "sys", 
    samplerate   = sys_clk_freq, 
    csr_csv      = "analyzer.csv", 
) 

Listing 13: LiteScope Analyzer instance in make.py 

The LiteScope Analyzer instance is then accessed from the host machine using the 

litex_server command to start a TCP server that connects to the UART converter, and the 

litescope_cli command to connect to the TCP server, select trigger signals/values, and 

dump the received waveform data to a VCD file. The created VCD file can be viewed using 

programs such as GTKWave. LiteScope Analyzer was used to verify the correct operation of 

the AsyncFIFO and dacDriver modules. Testing the AsyncFIFO module involved checking 

the correct transfer of values across the clock domain crossing as well as the assertion of 

the back-pressure and ready flag signals. Figure 11 shows the waveform VCD as viewed in 

GTKWave, with the LiteScope Analyzer sampling at 48MHz. 

 

Figure 11: GTKWave screenshot of AsyncFIFO waveform 

A similar process was used in verifying the 3 signal outputs of the dacDriver module. The 

waveform was captured starting with a rising edge of the left-right clock, and the resulting 

signals compared to the expected values from the datasheet, as seen in Appendix 10.1. 

Figure 12 shows the waveform VCD as viewed in GTKWave, with the LiteScope Analyzer 

sampling at 48MHz. 
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Figure 12: GTKWave screenshot of DAC driver waveform 

4.6 Receiving CAN Frames 

A CAN receiver is required within the FPGA fabric to handle ACK signal generation and act 

as an interface between the CPU within the SoC and the external ATA6561 CAN 

Transceiver. The can SystemVerilog module contains logic for filtering of received CAN 

frames by ID and generation of ACK bits for accepted CAN frames. 

The LiteX CanReceiver module contains two 11 bit CSRStorage fields, can_id and id_mask, 

shown in Listing 14. These fields can be set from the CPU via the CSR bus and allow 

software to set the filter ID and mask. For every incoming CAN frame, the ID in the received 

frame is compared to the can_id value, and as long as all bits match where the respective 

id_mask bit is 1, the id_match flag is driven high. The can_id reset value of 0x123 is used to 

match the Embedded Systems module coursework, and the id_mask reset value of 0x7FF 

means only CAN frames with an ID of 0x123 will be acknowledged and stored by the 

module. 

self.can_id = CSRStorage(size = 11, reset = 0x123 
self.id_mask = CSRStorage(size = 11, reset = 0x7FF) 

Listing 14: CanReceiver CSRStorage fields 

An internal counter that is incremented at 48MHz keeps track of the current bit time, 

where each CAN bit is expected to last for 384 cycles at 48MHz. Bits are sampled and added 

to the internal shift register on the rising edge of the system clock at 75% of the bit time, 

when the internal counter is at 287. The internal counter is reset to 0 when the current 

value is 383 or when a recessive to dominant (1 to 0) transition is detected on the CAN bus, 

maintaining synchronisation with the CAN bus and other devices. 

A counter is used to keep track of the number of consecutive bits of the same polarity, 

being reset to 0 if the previous and current bit differ or if the counter has reached 4 

indicating 5 consecutive bits of the same polarity. When the counter has reached 4, the next 

bit is not shifted into the internal shift register as it is a stuffed bit as discussed in the CAN 

Bus section. 

A CAN Frame has been correctly received when the masked received ID and can_id match, 

the data length code is 8 and the required bits for ID extension, remote request and 

reserved bits are all 0. These conditions are AND’d together to produce a msg_valid flag. 

file:///C:/Users/suple/Desktop/fyp-writeup/rtl/can.sv
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When the msg_valid flag is active, the received frame ID and data are stored in internal 

registers that are connected to CSRStatus fields, allowing the CPU to read the received 

frame ID and data. This flag also results in the ACK bit being sent, by driving the TX signal 

low to the dominant state for one bit time. 

When the msg_valid flag is active, an output pin connected to an EventSourcePulse object 

is driven high for 1 cycle at 48MHz. This event source is connected to an EventManager 

which is connected to the CPU interrupt bus, creating a hardware interrupt that can be 

handled in an Interrupt Service Routine to copy the CAN frame ID and data into CPU 

memory. This interrupt logic is created in the canReceiver.py module, and an excerpt of 

the code showing the interrupt logic is in Listing 15. Interrupt handling in LiteX is 

discussed in more detail in the interrupts section. 

self.submodules.ev = EventManager() 
self.ev.frame = EventSourcePulse() 
self.ev.finalize() 
self.comb += self.ev.frame.trigger.eq(self.rcv_pulse) 

Listing 15: canReceiver.py excerpt showing interrupt setup 

In the interest of a quicker working proof of concept design, the can module matches values 

hard-coded into the ES-CAN library provided in the Embedded Systems module 

coursework. The DLC (Data Length Code) of CAN frames is expected to always be 8 bytes, 

so the DLC value is not exposed to the CPU and frames with less than 8 bytes are not 

acknowledged or stored. The can module can be extended to provide the received DLC 

value to the CPU via a CSRStatus field. The can module also does not check the CRC bits of 

the received frame, as bit flip errors are highly unlikely due to the short length of the CAN 

connection and the use of low-speed CAN. A crc_match signal is currently driven constant 

high but provides a location for CRC checking to be implemented in the future. 

Helper functions are provided in a can library to allow students to more easily read the 

CSRStatus fields from the CPU. The library is discussed in more detail in the software 

section. The demo program includes a can_read function which continually reads the latest 

received CAN frame ID and data and prints it to the UART console. This function was used 

alongside a PicoScope to verify that the CAN frames sent from a StackSynth module are 

correctly acknowledged and received from the C++ demo program. This testing is detailed 

in the testing section. 

4.7 Controlling the design from software 

A large factor in the usability of the project deliverables is the ease of use of the specialised 

hardware from software, including student-written code running on the embedded CPU. 

Libraries containing helper functions are located in the demo folder of the repository and 

file:///C:/Users/suple/Desktop/fyp-writeup/modules/canReceiver.py
file:///C:/Users/suple/Desktop/fyp-writeup/demo/
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provide easier access to the registers needed to access the CAN receiver and wave 

generator blocks. 

The demo software also includes functions from testing throughout the project, built upon 

functions from the auto-generated csr.h header file. These functions are wrapped in 

#ifdef blocks so they are only included in the compiled binary when the relevant modules 

are instantiated within the gateware. For example, led_cmd() and leds_cmd() set the 

colour of the OrangeCrab RGB LED to a user-provided value or specific values in a test 

pattern respectively. 

The audio helper library contains functions for setting the waveform and target frequency 

of a specific oscillator and provides enumeration values matching the available waveforms 

and frequencies of notes in a range of octaves which are detected and used in editor 

suggestions. The helper function implementations satisfy the logic requirement of the 

oscillator index being set before the waveform or target frequency is set, as the write 

strobe signal is used as an indicator for the logic to capture the new values. The key C++ 

function signatures are shown in Listing 16. 

void set_wave(uint32_t osc, uint32_t wave); 
void set_freq(uint32_t osc, uint32_t freq); 
void audio(uint32_t osc, uint32_t wave, uint32_t freq); 

Listing 16: audio.h function signatures 

The can helper library contains a C++ struct definition for the CAN frame ID and data, 

which is used as the return type for the can_read() function and functions for reading and 

writing the CAN filter ID and mask. An example implementation of the CAN receiver 

interrupt handler and initialisation function is also provided, where the interrupt is reset 

and enabled and the received CAN frame is output to the serial console above the current 

prompt. 

This interrupt handler, explained in further detail in the next section, is implemented for a 

software interrupt and is called from a polling interrupt service routine in the demo, as the 

PicoRV32 CPU does not support external hardware interrupts. The VexRiscV CPU was not 

used for testing the interrupt handler as this requires an interrupt handler to be registered 

and the documentation did not cover the software side of using hardware interrupts. The 

key C++ struct and function signatures are shown in Listing 17. 

struct can_frame { 
  uint16_t id; 
  uint8_t data[8]; 
}; 
uint32_t can_id_read(void); 
void can_id_write(uint32_t value); 
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uint32_t can_mask_read(void); 
void can_mask_write(uint32_t value); 
can_frame can_read(void); 
void can_isr(void); 
void can_init(void); 

Listing 17: can.h function signatures 

4.8 Interrupts and Scheduling 

In an embedded system, interrupts are a vital part of a scheduling system, allowing for 

higher priority tasks to be executed when required. The VexRiscV CPU supports hardware 

interrupts from external logic such as the canReceiver module, however documentation 

for software to handle these interrupts is limited. 

For this section, the PicoRV32 CPU was used as external interrupts do not cause the CPU to 

jump to an interrupt handler and interrupts must be manually checked and handled, 

allowing for easier implementation of a Proof-of-Concept interrupt handler. The PicoRV32 

CPU is not used in the remainder of this project as the performance is lower than the 

VexRiscV CPU at 0.516 DMIPS/MHz [41] compared to 1.44 DMIPS/MHz [42] as reported in 

the respective documentation. 

Interrupts in a LiteX module are created by adding an EventManager which automates 

connection to the main interrupt bus and accepts three types of events as inputs. An 

EventSourcePulse triggers on a pulse and stays asserted after the trigger is de-asserted. 

The event is only cleared when acknowledged by software. 

An EventSourceProcess triggers on either a rising or falling edge of a signal and is used to 

monitor the status of a signal and generate an interrupt on a change. The event is cleared 

when acknowledged by software. Finally, an EventSourceLevel contains the current status 

of an event and must be set and cleared by external logic, such as a design that keeps 

asserting an interrupt until the interrupt cause is cleared. 

The EventManager module has an irq output indicating when an enabled interrupt is 

pending, a status CSR indicating the current level of an event source, a pending CSR 

indicating which interrupts have been triggered and not yet acknowledged and an enable 

CSR indicating which interrupts are active. 

Following the addition of an EventManager and EventSourcePulse to the canReceiver 

module, an interrupt service routine is used to check for pending interrupts and handle the 

respective ISRs for each interrupt. Listing 18 shows the can_init() function provided in 

the demo can library, where the can IRQ is enabled, the specific interrupt source is enabled 

within the Event Manager, and a debug message is printed to the serial console. 
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void can_init(void) { 
  irq_setmask(irq_getmask() | (1 << CAN_INTERRUPT)); 
  can_ev_enable_frame_write(1); 
  printf("CAN INIT\n"); 
} 

Listing 18: can_init() function 

Listing 19 shows the can_isr() function provided in the demo can library. The ISR first 

clears the pending event in the Event Manager, then reads the last received CAN frame. For 

debugging purposes, the CAN frame is printed to the serial console and the prompt and 

current input buffer restored. Finally, the CAN frame interrupt is re-enabled in the Event 

Manager. The ISR also changes the current LED colour to make it clearer when the ISR has 

run. The code to change the LED colour and print to the serial console is not shown in the 

listing for brevity. 

void can_isr(void) { 
  can_ev_pending_frame_write(1); 
  // Update LED to make it clear that the ISR has run... 
  can_frame frame = can_read(); 
  // Print CAN frame to serial console... 
  // Reprint prompt and current input buffer... 
  can_ev_enable_frame_write(1); 
} 

Listing 19: can_isr() function 

Along with the LiteX built-in Timer module, interrupts can be used to create hardware 

timers. This is especially beneficial for supporting real-time operating systems such as 

FreeRTOS, where timers can be used to create initiation triggers for tasks and interrupts 

are used for unpredictable events such as receiving CAN frames as in the Embedded 

Systems coursework. This is explained in further detail in the further work section. 

4.9 FPGA Utilisation 

As this project uses an FPGA, a major limitation on the performance of the design is the 

available resources. In the output of the nextpnr placement stage, there is a device 

utilisation report which shows the number of each type of logic element and primitive 

block used. Table 4 shows the FPGA utilisation report, and an excerpt of the logs containing 

the original report is included in Appendix 10.2. 

Logic Element Used Total Utilisation % 

TRELLIS_IO 74 197 37 
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Logic Element Used Total Utilisation % 

DCCA 8 56 14 

DP16KD 49 56 87 

MULT18X18D 2 28 7 

ALU54B 0 14 0 

EHXPLLL 2 2 100 

EXTREFB 0 1 0 

DCUA 0 1 0 

PCSCLKDIV 0 2 0 

IOLOGIC 49 128 38 

SIOLOGIC 0 69 0 

GSR 0 1 0 

JTAGG 0 1 0 

OSCG 0 1 0 

SEDGA 0 1 0 

DTR 0 1 0 

USRMCLK 0 1 0 

CLKDIVF 1 4 25 

ECLKSYNCB 1 10 10 

DLLDELD 0 8 0 

DDRDLL 1 4 25 

DQSBUFM 2 8 25 

TRELLIS_ECLKBUF 3 8 37 

ECLKBRIDGECS 1 2 50 

DCSC 0 2 0 

TRELLIS_FF 7790 24288 32 

TRELLIS_COMB 24126 24288 99 

TRELLIS_RAMW 95 3036 3 

Table 4: FPGA Utilisation Report 

Lines of importance from Table x.y include: 

• DP16KD: dual-port RAM blocks, used in the CPU and the sample storage of the 

LiteScope Analyzer 
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– 49/56 used: the memory of the Analyzer is limited due to this, but the design 

is unlikely to require more than are currently used 

• MULT18X18D: 18x18 multipliers, used in the CPU and for phase-step calculation in 

the cordic block 

– 2/28 used: a previous iteration of the cordic block where all phase-steps 

were calculated combinatorially in parallel resulted in 65/28 multipliers 

• EHXPLLL: Phase-Locked Loop, used for generating the 48MHz and other clock 

signals required in the design 

– 2/2 used: the design already uses both available PLLs, one for the USB PHY 

and one for the remainder of the design, where the DAC clock output was 

added 

• TRELLIS_FF: DFF (D-type flip-flop) logic elements, used to store signals between 

clock cycles 

– 7790/24288 used: the design currently uses 32% of the available resource so 

there is room for expansion 

• TRELLIS_COMB: combinational logic elements, used for all logic in the design 

between clocked elements 

– 24126/24288 used: determines the amount of logic that can be implemented 

in the design, this is the limiting factor to adding more features to the design 

The breakdown of TRELLIS_COMB usage is helpful in identifying blocks that could be 

optimised, however the version of nextpnr provided as part of Project Trellis does not 

include the GUI and the command-line program does not expose per module utilization 

reports. As a comparison, the LUT4 utilisation has been used as an approximation of the 

logic utilisation of each module, as provided in the synthesis report by Yosys, shown in 

Table 5. The table shows that the cordic module is small relative to the PicoRV32 CPU, 

however the genWave module uses a large amount of logic and is likely a target for future 

optimisation. 

Module LUT4 Usage 

gsd_orangecrab 15543 

picorv32 3027 

can 139 

dacDriver 62 

genWave 8874 

saw2sin 61 

cordic 1066 

Table 5: LUT4 Usage breakdown by submodule 
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For further additions to the design, an increase in unused logic will be required. The 

OrangeCrab model could be swapped from the LFE5U-25F model to the LFE5U-85F, which 

has 84k LUTs, 3744Kb of embedded RAM and 669Kb of distributed RAM, however this 

would lead to increased per-board cost of producing the StackSynth FPGA Extension 

boards. 

Alternatively, the number of logic elements used in the design could be reduced. One 

method would be to reduce the number of available oscillators, reducing the logic and 

storage for calculating phase-steps and combining samples, however the logic used to 

convert phase to samples is shared between all of the oscillators so the decrease in logic 

element usage is likely to be small. Another method would be to replace the VexRiscV and 

PicoRV32 CPUs used in this design with a smaller CPU at the expense of performance. The 

viability of these options is not known, and is left as future work. 

5 Testing and Results 

This section discusses the testing of individual blocks within the overall design, and the 

tools used to verify correct operation. 

5.1 Phase to sine amplitude conversion 

One area with a noticeable impact on performance is the phase to sine amplitude 

conversion of samples within the cordic and saw2sin SystemVerilog modules, as incorrect 

amplitude values can result in audible glitches in the waveform output at the 3.5mm 

headphone port. The cordic module was first checked as a standalone module, and then 

integrated into the saw2sin module and exhaustively tested at each input value as the 

output amplitude only depends on the input phase and waveform selections, with no 

internal state between input values. 

This testing was automated using cocotb, a Python-based verification framework for 

SystemVerilog and VHDL designs, and the repository containing the modules and testbench 

is available on GitHub [43]. The Python testbench defines the timing and values of the 

inputs and checks the output value against the reference, however simulation is handled by 

an external simulator. In this module, only two-state simulation is needed as unknown and 

high impedance values are not used so Verilator [44] is used as the simulator, as 

simulations are much faster than other simulators while maintaining cycle accuracy. If 

exact timing is required, using another simulator may be more appropriate as support for 

timing directives is limited in Verilator. 

The testbench is a function which loops through the 65536 possible input values, and for 

each value sets the input phase i_saw and reads the output amplitude o_sin. The output 
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amplitude is then compared to the expected value e_sin, which is calculated using the 

sin() function in Python and the error added to the total recorded error. Any errors above 

2 from the expected float value are logged and after the loop completes, the average error 

per input is displayed. The Python testbench is shown in Listing 20 and can be run by 

cloning or downloading the repository and running make in the root directory. 

# import statements... 

 
@cocotb.test() # cocotb test decorator 
async def test_new_cordic(dut): 
    await cocotb.start(Clock(dut.i_clk, 10, units='ps').start()) 

    # start clock coroutine 
    diff = 0 # total error 
    for cycle in range(0, 65536): # loop through input values 
        dut.i_saw.value = cycle # set the input phase 
        await Timer(20, units='ps') # wait so output can settle 
        e_sin = 32768 * (sin((cycle * pi) / (2**15)) + 1) 

        # calculate expected output 
        error = float(dut.o_sin.value) - e_sin # calculate error 
        if abs(error) > 2: # log any errors above 2 
            dut._log.info() # error message... 
        diff += abs(error) # add error to the total 

 

    dut._log.info("Testbench finished, average error %f" % (diff / 65536)) 

Listing 20: Python cocotb testbench for saw2sin module 

Using the testbench in Listing 20, the accuracy of the saw2sin module was improved by 

adjusting the bit offsets of the amplitude output for the four quadrants of the sine wave 

output. The final accuracy achieved was an average error of 0.455326 per input value 

meaning the integer output of the saw2sin value is within 1 of the expected value on 

average. Listing 21 shows an excerpt of the saw2sin SystemVerilog module where the 

offsets can be adjusted for each of the four quadrants of the sine wave. 

// Signals for `reverse` and `invert` indicate the quadrant of the sine wave 

 
logic [16:0] sin; 
always_ff @(posedge i_clk) sin <= reverse 
  ? (invert ? ~{1'b1, qsin[15:0]}          // Reverse, Invert: 270-360° 
            : {1'b1, qsin[15:0]} + 17'd1)  // Reverse, Normal: 90-180° 
  : (invert ? ~{1'b1, qsin[15:0]} + 17'd2  // Normal, Invert: 180-270° 
            : {1'b1, qsin[15:0]} + 17'd0); // Normal, Normal: 0-90° 
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always_comb o_sin = sin[16:1]; // Remove extra bit used for offsets 

Listing 21: SystemVerilog saw2sin module, excerpt of adjusting amplitude offsets 

5.2 CORDIC propagation delay 

In the implementation of the genWave SystemVerilog module, the cordic module is used to 

convert a phase value to a sine amplitude, however when viewing the output of the 

PCM1780 using a PicoScope, visible glitches were observed in the waveform output. A 

screenshot of the PicoScope software is shown in Figure 13, where the glitch in the output 

can be seen, and Figure 14, where a mask is used to show glitches from multiple captures at 

once. The glitches primarily occur near when the wave changes sign, or when the MSB of 

the amplitude changes. The expected cause of this glitch was propagation delay differences 

between the bits of the amplitude output. To mitigate this, the combinatorial output of the 

cordic module was replaced with a synchronous output by changing the always_comb 

statement to an always_ff @(posedge i_clk). This change removed the glitches from the 

waveform output, as shown in Figure 15. 

 

Figure 13: PicoScope screenshot of glitch in waveform output 
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Figure 14: PicoScope screenshot of masked glitches in waveform output 

 

Figure 15: PicoScope screenshot of waveform output without glitches 

 

As the cordic module was no longer combinatorial, the genWave module would need to 

sample or capture the output once it is stable. The propagation delay of the cordic module 

was measured by using a counter to iterate through all 65536 input values, incrementing 

every 8 cycles, and then connecting the i_saw and o_sin signals to the LiteScope Analyzer, 

checking the time taken for the output to stabilise. The cocotb testbench is available in the 

project files at modules/testPropagation.py, and resulting waveform VCD file at 

notes/testPropTiming.vcd. 

A screenshot of the VCD file in GTKWave is included in Figure 16. The propagation delay of 

the cordic module was measured to be 1-2 cycles at 48MHz, so the output is sampled after 

3 cycles to ensure the output is stable. An excerpt of the genWave module showing the value 

capture after 3 cycles is shown in Listing 22. 

https://github.com/supleed2/EIE4-FYP/blob/main/modules/testPropagation.py
https://github.com/supleed2/EIE4-FYP/blob/main/notes/testPropTiming.vcd
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Figure 16: GTKWave screenshot of cordic propagation delay 

// Saw amplitude captured on cycle 0 
always_ff @(posedge i_clk48) if (clk_div[1:0] == 2'd0) saw <= phase[clk_div[7

:2]]; 

 
// Waveform selection 
always_comb // Select waveform sample based on wav_sel for current oscillator 
  case (wav_sel[clk_div[7:2]]) 
    8'd0: sample = saw; 
    8'd1: sample = square; 
    8'd2: sample = triangle; 
    8'd3: sample = sine; 
    default: sample = saw; 
  endcase 

 
// Sample captured on cycle 3 
always_ff @(posedge i_clk48) if ((clk_div[1:0] == 2'd3) && osc_valid) 
  samples[clk_div[7:2]] <= sample; 

 
// Remaining module code... 

Listing 22: SystemVerilog genWave module, excerpt of capturing cordic output 

5.3 Receiving and acknowledging CAN frames 

Operation of the CAN receiver module was verified by connecting the StackSynth FPGA 

Extension board to the main StackSynth module and sending CAN frames. A PicoScope [45] 

was connected to the CANL pin of the StackSynth inter-board connector using probe A 

(blue) and GPIO 11 of the OrangeCrab using probe B (red). The PicoScope serial decoder 

was set up to decode the CAN bus signal and display the received CAN frames, including 

whether the communication is valid or invalid. 

Figure 17 shows a screenshot of the PicoScope software, where GPIO 11 of the OrangeCrab 

was driven by the stuff_bit signal of the CAN receiver module and this signal matches the 

stuff bits indicated by the PicoScope Serial Decoder. In the figure, two CAN frames are 

correctly acknowledged, with both having an ID of 0x123 and data bytes of 

0x5206010000000000 and 0x5206030000000000. In the Embedded Systems module, these 
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correspond to note-down events for octave 6 note 1 or C and octave 6 note 3 or D 

respectively. 

 

Figure 17: Screenshot of PicoScope using CAN serial decoder on the blue probe 

5.4 Software-interrupt detection of CAN frames 

Interrupts from the CAN receiver module to the CPU were verified using the PicoRV32 CPU 

as this CPU does not jump to an interrupt handler when an external interrupt is received. 

This is helpful for testing as the documentation of the LiteX project on registering an 

interrupt handler is incomplete, stopping after the Event Manager is connected to the CPU 

interrupt port. To demonstrate that the interrupts reach the CPU, are correctly identified 

and handled, the demo program includes an interrupt service routine that runs in a polling 

manner in the main loop before the serial console input handler runs. This interrupt 

service routine checks if any interrupts are pending and which, calling the respective 

interrupt handler. 

The CAN interrupt handler, discussed in the interrupts section, is called when the CAN 

frame received interrupt is detected, and reads the latest received CAN frame values. The 

CAN frame ID and data is then printed above the current serial console input line, an 

excerpt from the LiteX Terminal is shown in Listing 23. Along with printing the CAN frame 

values, the interrupt handler also updates the current OrangeCrab RGB LED colour. This 

test of functionality is a demonstration and does not have quantitative results to explain. 

CAN frame    12 received, ID: 0x123, data 0x52 0x06 0x01 0x00 0x00 0x00 0x00 

0x00 

 

StackSynth> input restored here 

Listing 23: CAN interrupt handler printing received CAN frame 

5.5 Integration with StackSynth board 

Finally, the StackSynth FPGA Extension board was tested with the StackSynth module to 

verify that the CAN bus communication and sample generation works, including multiple 

keys at once. In order to test multiple key audio output, the can_listen() command was 
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added to the demo program. Appendix 10.3 shows the can_listen() function, which is 

called when the can_listen command is entered into the LiteX Terminal. 

This function keeps track of which notes are currently active and which oscillators are 

being used for those notes, updating the active notes and oscillator frequencies as note 

down and note up events are received over the CAN bus. It does not use the interrupt 

handler as it is a demo of audio production however the logic could be separated into tasks 

as part of future work to shift to a real-time operating system such as FreeRTOS, however 

the helper functions in the audio and can libraries are used to simplify the code. 

C++ standard library data structures such as a set or vector are more appropriate for such a 

function however the libraries failed to link when testing with the GCC compiler provided 

by the litex_setup.py script. Another version of GCC may allow standard library 

structures and headers to be used. Listing 24 shows the output from GCC when attempting 

to compile a program with #include <vector>. 

/usr/riscv64-linux-gnu/include/gnu/stubs.h:8:11: 
fatal error: gnu/stubs-ilp32.h: No such file or directory 
    8 | # include <gnu/stubs-ilp32.h> 

Listing 24: GCC error when including vector header 

And finally, a measure of the performance improvement in audio quality between the 

StackSynth and FPGA Extension boards is the SNR (Signal-to-Noise Ratio) of the audio 

output as a higher SNR would result in a lower noise floor and clearer audio for the same 

signal amplitude. Table 6 contains the frequency, SNR and THD results for the StackSynth 

board and the FPGA Extension board when using a target frequency of 3520Hz (A7), each 

using 500 samples in the measurement. The screenshots of the PicoScope measurements 

are included in Appendix 10.4. 

The results show a small but measurable improvement in SND as well as THD, while the 

frequency is slightly further from the target on the FPGA. Overall the audio performance of 

a single oscillator is similar, however the FPGA accelerator is capable of many more 

oscillators simultaneously. 

Board Frequency (Hz) SNR (dBc) THD (%) 

StackSynth 3520.29 24.48 2.71 

FPGA Extension 3520.60 25.18 2.12 

Table 6: SNR and THD measurements of StackSynth and FPGA Extension boards 
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6 Evaluation 

The main difficulty in this project came from the lack of documentation of specific features 

or modules provided by the LiteX framework, as the overall flow of building gateware and 

software is largely automated, however extending the default gateware with custom 

modules that connect to existing designs requires precise Python structures to be built in 

order to synthesize to the expected design. The SoC and modules developed in this project 

can be built upon and can act as a form of documentation of the less documented features 

of LiteX, such as the interconnection of modules and process of building custom software to 

run on the embedded CPU. 

The SoC and software developed in this project allow a student to compile gateware for the 

OrangeCrab FPGA, write software to decode CAN frames and control the 64 available 

oscillators. This can be used as an extension to the current 3rd Year Embedded Systems 

coursework to allow for many more frequencies to be generated at once, including more 

complex effects such as chords from a single note press on the StackSynth module. While 

this project aims to be a direct extension of the existing coursework, students planning to 

use the OrangeCrab FPGA will need to install the LiteX framework as the upload of user 

software requires the LiteX Terminal, even if the gateware does not need to be compiled or 

re-flashed to the OrangeCrab FPGA. 

Writing user software for the SoC also requires the LiteX framework to be installed, as the 

version of GCC that is included provides many header files that are required for the 

compilation of the software and the LiteX setup script automates the installation of the 

required version of GCC for the RISC-V CPUs used in the SoC. Other header files such as the 

auto-generated csr.h definitions file can be reused from this project if the gateware is not 

changed, and the provided helper function libraries build upon the defined macros and 

functions in the csr.h file. 

Of the goals identified in the Requirements Capture section, the ability to receive CAN 

frames via the inter-board connector and drive multiple oscillators simultaneously from 

user software have been met as 64 oscillators are available. The ease of use of the custom 

modules is not quantitatively measurable, however the style of functions in the audio and 

can C++ headers aim to match the style of functions in the ES_CAN header file provided in 

the current Embedded Systems coursework. 

The primary goal identified that has not been met in this project is the implementation of 

filter modules that would allow more complex sound effects to be created such as 

equalisation filters or distortion effects. The filter modules were omitted as the completion 

of the core modules and overall Proof-of-Concept design took longer than expected due to 

the experimentation needed in the early stages of the project to understand the LiteX 
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framework. However, were a filter module to be implemented, it could be easily inserted 

in-between the sample generation module and the Asynchronous FIFO, including multiple 

filter blocks in series to create a pipeline of filters that affect the incoming samples 

sequentially. Such an implementation would scale linearly in resources as the number of 

filter stages is increased, however the filter logic could also be reused for multiple sample 

calculations to allow the number of filter stages to scale more efficiently at the cost of code 

complexity and timing requirements. 

The current design is very high in resource utilisation when synthesised using Yosys, as 

discussed in the FPGA Utilisation section, and optimisations have been made to allow the 

design to fit within the Lattice LFE5U-25F such as shared use of modules and logic, 

however features such as filters and effects on a stream of samples will require extra logic 

either requiring further optimisation or an FPGA with more resources. 

7 Conclusions and Further Work 

This report presented the available resources and implementation of an FPGA Accelerator 

for the StackSynth module, allowing for many more oscillators than is possible solely in the 

CPU of the Nucleo L432KC microcontroller. The shared use of computational logic reduces 

the resource requirements of the design and allows for the use of the OrangeCrab FPGA 

which is small enough to fit next to the main StackSynth module. Careful timing analysis of 

high-speed signals using LiteScope Analyzer along with the PicoScope for longer-duration 

signals contributed to the protocol compatible function of the canReceiver and dacDriver 

modules. 

The main benefit of the work completed in this project is the ability to extend the current 

design with new modules while supporting software control of these new modules, as 

much of the benefit of LiteX comes from the automatic generation of pre-processor 

definitions and functions to ease communication with and control of external modules. 

While working on the implementation of this project, possible avenues for further work 

were identified, specifically greater precision in target frequencies and the addition of 

software support for hardware interrupts to the embedded CPU. 

The wave generation block currently accepts integer format values for the target frequency 

of each oscillator; however, this restricts the precision of the selectable frequencies, 

especially at lower frequencies where the changes in calculated phase step are greater. The 

phase step calculation can be adjusted to support a fixed-point format where the input 

target frequency value is a power of two multiple (x2^n) of the desired target frequency, 

and then the phase step is shifted right to compensate for the scaling. A version of the 

genWave module using a 24.4-bit fixed point format was implemented, however when 
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attempting to compile software for the SoC, any use of floating-point values and operations 

caused the compile to fail due to missing library files, so this enhancement has been left as 

future work. Preliminary research suggests that the picolibc setting for print and scan 

support may remove support for floating point values, as explained in the picolibc GitHub 

repository printf documentation [46]. 

With an event source and event manager, the current implementation of the can module is 

correctly connected to the interrupt port of the embedded CPU and generated interrupt 

signals when requested from the SystemVerilog module using a pulse, however the demo 

software does not currently include the necessary setup to handle hardware interrupts as 

supported by the VexRiscV CPU. The addition of hardware interrupts and an interrupt 

handler would allow for more flexibility in the user software and may allow for running 

FreeRTOS on the OrangeCrab FPGA, bringing the experience of writing software for the SoC 

closer to that of the existing StackSynth module. Handling of an interrupt as soon as it 

occurs also reduces the chances of a second interrupt occurring before the first handler has 

finished running, which could cause the second interrupt to be missed if of the same type 

or an urgent task to be delayed. 

8 User Guide 

This project is easiest to build on a Unix-like system, e.g. Linux or macOS (including WSL2), 

but can be built on Windows though instructions may need to be adapted. 

8.1 Prerequisites 

More information on toolchain setup can be found on the OrangeCrab Getting Started Guide 

[47] 

• Python 3.6+ 

• dfu-util (also provides dfu-suffix) 

– Can be installed via sudo apt install dfu-util on Ubuntu, more 

information on the project website [48] 

– LibUSB drivers for Windows, or udev rules for Linux, explained in detail on 

the dfu-util project website 

• Yosys and nextpnr 

– Can be installed separately, following the guide for Project Trellis [12] 

– Precompiled versions available as part of the OSS CAD Suite [49] 

– Check using yosys -V and nextpnr-ecp5 -V 

• LiteX [50] 
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– Follow the installation guide [51] to install the LiteX packages to your 

environment 

– Meson, Ninja and Sphinx tools using pip3 install meson ninja sphinx 

– RISC-V GCC using sudo ./litex_setup.py --gcc riscv which installs gcc-

riscv64-linux-gnu or equivalent 

If using WSL2, you will also need to install usbip in the Linux distribution and usbipd-win 

[52] on Windows. The wiki is helpful for setting up WSL2 USB pass-through. [53] 

8.2 Running the Project 

After downloading or cloning the repository, the remaining steps are handled by the 

build.sh bash script, but the stages are also explained here in case you want to run them 

manually or are using Windows without WSL2. (Optional) steps prompt the user for 

confirmation, in case you want to skip them on subsequent runs. 

• (Optional) Build the Bitstream file 

– Run python3 --build --doc to build the bitstream and documentation of 

the SoC 

– The built documentation is located in 
build/gsd_orangecrab/doc/_build/html/ 

– Move / rename the bitstream to a more convenient location, mv 

build/gsd_orangecrab/gateware/gsd_orangecrab.bit 

gsd_orangecrab.dfu 

– Apply the DFU suffix to the bitstream, dfu-suffix -v 1209 -p 5af0 -a 
gsd_orangecrab.dfu 

• (Automatic) Build the demo software, C++ 

– From the project root, run BUILD_DIR=`realpath -eL 
build/gsd_orangecrab/` WITH_CXX=1 make -C demo 

– The resulting binary is located at demo/demo.bin 

• (Optional) Flash the bitstream to the OrangeCrab 

– Run dfu-util -w -D gsd_orangecrab.dfu and press the button on the 

OrangeCrab to enter the bootloader, flashing will begin when the bootloader 

is detected 

• (Optional) Load the demo software over a serial connection using litex_term 

– Run litex_term --kernel {path to demo.bin} /dev/ttyACM0, then either 

press the button on the OrangeCrab to reboot, or type serialboot or reboot 

in the LiteX terminal 

– On Windows, the port will be a COM port rather than a TTY, and on Unix 

systems, the port may be different 
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10 Appendix 

10.1 PCM1780 Audio Data Input Formats 
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10.2 Raw nextpnr Utilisation output 
Info: Device utilisation: 
Info:             TRELLIS_IO:    74/  197    37% 
Info:                   DCCA:     8/   56    14% 
Info:                 DP16KD:    49/   56    87% 
Info:             MULT18X18D:     2/   28     7% 
Info:                 ALU54B:     0/   14     0% 
Info:                EHXPLLL:     2/    2   100% 
Info:                EXTREFB:     0/    1     0% 
Info:                   DCUA:     0/    1     0% 
Info:              PCSCLKDIV:     0/    2     0% 
Info:                IOLOGIC:    49/  128    38% 
Info:               SIOLOGIC:     0/   69     0% 
Info:                    GSR:     0/    1     0% 
Info:                  JTAGG:     0/    1     0% 
Info:                   OSCG:     0/    1     0% 
Info:                  SEDGA:     0/    1     0% 
Info:                    DTR:     0/    1     0% 
Info:                USRMCLK:     0/    1     0% 
Info:                CLKDIVF:     1/    4    25% 
Info:              ECLKSYNCB:     1/   10    10% 
Info:                DLLDELD:     0/    8     0% 
Info:                 DDRDLL:     1/    4    25% 
Info:                DQSBUFM:     2/    8    25% 
Info:        TRELLIS_ECLKBUF:     3/    8    37% 
Info:           ECLKBRIDGECS:     1/    2    50% 
Info:                   DCSC:     0/    2     0% 
Info:             TRELLIS_FF:  7790/24288    32% 
Info:           TRELLIS_COMB: 24126/24288    99% 
Info:           TRELLIS_RAMW:    95/ 3036     3% 

 

10.3 can_listen() C++ function 

const uint32_t freqs[85] = {/* integer frequencies for */}; 
static void can_listen_cmd() { 
  for (int i = 0; i < 64; i++) { // Set all oscillators to sine wave 
    set_wave(i, WAVE_SINE); } 
  bool active_notes[85] = {0}; 
  uint32_t active_osc[64] = {0}; 
  uint32_t active_oscs = 0; 
  while (true) { 
    can_frame frame = can_read(); // Read CAN frame 
    switch (frame.data[0]) { 
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      case 'P': { // Note down event 
        uint32_t note = (frame.data[1] - 1) * 12 + frame.data[2]; 
        if (active_notes[note] || active_oscs == 64) // ignore 
        active_notes[note] = true;          // Mark note as active 
        active_osc[active_oscs] = note;     // Set oscillator to note 
        set_freq(active_oscs, freqs[note]); // Set oscillator frequency 
        active_oscs++; 
        break; 
      } 
      case 'R': { // Note up event 
        uint32_t note = (frame.data[1] - 1) * 12 + frame.data[2]; 
        if (active_notes[note] == false) { // Not active, ignore 
          break; 
        } else if (true) { 
          active_notes[note] = false; // Mark note as inactive 
          active_oscs--; 
          if (note == active_osc[active_oscs]) { // Note is last active 
            active_osc[active_oscs] = 0;         // Clear oscillator 
            set_freq(active_oscs, 0);            // Set frequency to 0 
            break; 
          } // Note is not last active 
          for (uint32_t i = 0; i <= active_oscs; i++) { // Find note 
            if (note != active_osc[i]) { 
              continue;  } // Note found 
            uint32_t swapped_note = active_osc[active_oscs]; // Get last note 
            set_freq(i, freqs[swapped_note]); // Set frequency to last active 
            active_osc[i] = swapped_note; // Set oscillator to last active 
            set_freq(active_oscs, 0); // Set last oscillator to 0 
            active_osc[active_oscs] = 0; // Clear last active note 
            goto done; // Done (break only exits for loop) 
          } 
          break; 
        } 
      } 
      default: { // Ignore other frames 
        break; 
      } 
    } 
  done: 
    if (readchar_nonblock()) { // Check for input and exit 
      getchar(); 
      for (int i = 0; i < 64; i++) { // Reset all oscillators 
        audio(i, WAVE_SAWTOOTH, 0); 
      } 
      return; 
    } 
  } 
} 
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10.4 PicoScope SNR and THD Measurement screenshots 

10.4.1 StackSynth Module Performance 

 

10.4.2 OrangeCrab Module Performance 

 

 


