

1

Imperial College London

Department of Electrical and Electronic Engineering

Final Year Project Report 2023

Project Title: FPGA Accelerator for StackSynth

Student: Aadi Desai

CID: 01737164

Course: EIE4

Project Supervisor: Dr Edward Stott

Second Marker: Dr Thomas J.W Clarke

2

Plagiarism Statement
I affirm that I have submitted, or will submit, an electronic copy of my final year project
report to the provided EEE link.

I affirm that I have submitted, or will submit, an identical electronic copy of my final year
project to the provided Blackboard module for Plagiarism checking.

I affirm that I have provided explicit references for all the material in my Final Report that
is not authored by me, but is represented as my own work.

I have not used ChatGPT or any other LLM as an aid in the preparation of my report.

3

Acknowledgements

I would like to thank Dr Ed Stott for his time and patience in the many meetings it took to

discuss this project, as well as his guidance in architectural decisions that impacted the

entire project. Without this insight, much more time may have been spend investigating

alternatives and this project may not have reached a Proof-of-Concept stage that is useful

for future students of the 3rd Year Embedded Systems module.

I would also like to thank my friends and family for their support and encouragement

throughout the project, especially my peers who stayed up late with me as we worked on

our projects together.

4

Abstract

The StackSynth module is an educational synthesiser platform based on the STM32L432,

an ARM Cortex-M4 based CPU, which is well suited for the low-level realtime programming

learning objective of the Embedded Systems module. However, it is not optimised for the

Digital Signal Processing operations needed for complex audio waveform generation.

This project develops an FPGA-based extension module for StackSynth, with the purpose of

increasing the audio ability and performance of the synthesiser, while offering future

Embedded Systems students an opportunity to develop code for a RISC-V System-on-Chip.

The main contribution of this project is the SystemVerilog modules and LiteX wrappers for

receiving low-speed CAN frames, producing waveforms for a given frequency, converting

from phase to a sine wave and driving the PCM1780 DAC audio / control ports. In addition,

there are demo C++ programs and helper functions for interfacing with the custom logic

and finally, integration of these custom logic blocks into a LiteX project that facilitates the

use of the existing IP for the CPU, memory controller, USB controller and serial interfaces.

The API for controlling the custom SystemVerilog logic has been designed to be simple to

implement within student written FreeRTOS tasks, similar to the existing Embedded

Systems Module coursework C++ architecture.

5

Contents
Plagiarism Statement .. 2

Acknowledgements .. 3

Abstract ... 4

Contents .. 5

List of Figures ... 7

List of Listings .. 7

List of Tables ... 8

List of Abbreviations .. 9

1 Introduction .. 10

1.1 Report Structure ... 10

2 Background ... 11

2.1 Requirements Capture.. 11

2.2 StackSynth Board ... 12

2.3 StackSynth FPGA Extension Board .. 13

2.4 OrangeCrab Board .. 13

2.5 LiteX Framework .. 14

2.6 PCM1780 DAC .. 16

2.7 CAN Bus .. 18

2.8 ATA6561 CAN Transceiver ... 21

3 Analysis and Design ... 23

4 Implementation ... 26

4.1 Setting up the LiteX Framework ... 26

4.2 Generating Audio Samples .. 29

4.2.1 Phase-Step Calculation .. 29

4.2.2 Phase to Amplitude Conversion ... 30

4.2.3 Sine Wave Approximation .. 31

4.2.4 Combining Oscillators .. 33

4.3 Transferring samples across clock domains .. 34

4.4 Driving the DAC (PCM1780) .. 36

4.5 Using LiteScope Analyzer .. 37

4.6 Receiving CAN Frames .. 39

4.7 Controlling the design from software ... 40

4.8 Interrupts and Scheduling .. 42

6

4.9 FPGA Utilisation .. 43

5 Testing and Results .. 46

5.1 Phase to sine amplitude conversion ... 46

5.2 CORDIC propagation delay ... 48

5.3 Receiving and acknowledging CAN frames .. 50

5.4 Software-interrupt detection of CAN frames ... 51

5.5 Integration with StackSynth board.. 51

6 Evaluation .. 53

7 Conclusions and Further Work ... 54

8 User Guide ... 55

8.1 Prerequisites .. 55

8.2 Running the Project ... 56

9 Bibliography ... 57

10 Appendix .. 61

10.1 PCM1780 Audio Data Input Formats.. 61

10.2 Raw nextpnr Utilisation output .. 62

10.3 can_listen() C++ function .. 62

10.4 PicoScope SNR and THD Measurement screenshots.. 64

10.4.1 StackSynth Module Performance... 64

10.4.2 OrangeCrab Module Performance ... 64

7

List of Figures
Figure 1: PCM1780 Control Interface Timing Diagram .. 18

Figure 2: CAN bus arbitration, where A sends a frame with a lower ID and wins arbitration.
 ... 19

Figure 3: CAN frame format of ACK field. ... 20

Figure 4: CAN Frame format, this frame contains 1 byte of data .. 21

Figure 5: ATA6561 Functional Block Diagram ... 22

Figure 6: System Architecture Overview .. 24

Figure 7: Wave Sample Generator Block internal structure ... 25

Figure 8: Polynomial approximation of sine wave, scaled to 16-bit input and output values
 ... 31

Figure 9: Sine wave output when using unsigned values .. 32

Figure 10: Sine wave output when using signed values by inverting the MSB 33

Figure 11: GTKWave screenshot of AsyncFIFO waveform .. 38

Figure 12: GTKWave screenshot of DAC driver waveform.. 39

Figure 13: PicoScope screenshot of glitch in waveform output .. 48

Figure 14: PicoScope screenshot of masked glitches in waveform output 49

Figure 15: PicoScope screenshot of waveform output without glitches 49

Figure 16: GTKWave screenshot of cordic propagation delay ... 50

Figure 17: Screenshot of PicoScope using CAN serial decoder on the blue probe 51

List of Listings
Listing 1: Examples of defining combinatorial and synchronous logic in LiteX 14

Listing 2: Example using the Instance() function .. 15

Listing 3: Example of bit stuffing, where the red bits are stuffed bits added to the sequence
 ... 20

Listing 4: TestRgb LiteX Module .. 27

Listing 5: ledPwm SystemVerilog Module .. 28

Listing 6: Request user_led pins from platform in definition of TestRgb 29

Listing 7: Definition of user_led pins in OrangeCrab platform ... 29

Listing 8: Equation for calculating phase step values .. 30

Listing 9: SystemVerilog implementation of phase step calculation ... 30

Listing 10: Combining individual oscillator samples into a single signed sample 34

Listing 11: LiteX report excerpt showing DAC clock frequency .. 36

Listing 12: Excerpt of the dacAttenuation data shift register ... 37

Listing 13: LiteScope Analyzer instance in make.py .. 38

Listing 14: CanReceiver CSRStorage fields .. 39

Listing 15: canReceiver.py excerpt showing interrupt setup ... 40

Listing 16: audio.h function signatures ... 41

Listing 17: can.h function signatures ... 42

Listing 18: can_init() function ... 43

Listing 19: can_isr() function ... 43

Listing 20: Python cocotb testbench for saw2sin module ... 47

Listing 21: SystemVerilog saw2sin module, excerpt of adjusting amplitude offsets 48

8

Listing 22: SystemVerilog genWave module, excerpt of capturing cordic output 50

Listing 23: CAN interrupt handler printing received CAN frame .. 51

Listing 24: GCC error when including vector header ... 52

List of Tables
Table 1: PCM1780 User-adjustable Settings ... 17

Table 2: Conversion flags of quarter wave CORDIC module to full wave 31

Table 3: PCM1780 - Table 1. System Clock Frequencies for Common Audio Sampling
Frequencies .. 35

Table 4: FPGA Utilisation Report ... 44

Table 5: LUT4 Usage breakdown by submodule ... 45

Table 6: SNR and THD measurements of StackSynth and FPGA Extension boards 52

9

List of Abbreviations
• ACM: Abstract Control Model (USB

Class)

• AXI: Advanced eXtensible Interface

• BRAM: Block RAM

• CAN: Controller Area Network

• CDC: Communications Device Class

(USB Class)

• CPU: Central Processing Unit

• CSR: Control and Status Register

• DAC: Digital-to-Analogue

Converter

• DFU: Device Firmware Upgrade

(USB Class)

• DSL: Domain Specific Language

• DUT: Device Under Test

• FIFO: First-In First-Out

• FPGA: Field-Programmable Gate

Array

• GPIO: General Purpose

Input/Output

• GUI: Graphical User Interface

• HDL: Hardware Description

Language

• IRQ: Interrupt ReQuest

• ISR: Interrupt Service Routine

• LSB: Least Significant Bit

• LUT: Look-Up Table

• MOSFET: Metal-Oxide

Semiconductor Field-Effect

Transistor

• MSB: Most Significant Bit

• PLL: Phase-Locked Loop

• PWM: Pulse-Width Modulation

• QSPI: Quad Serial Peripheral

Interface

• RAM: Random Access Memory

• ROM: Read-Only Memory

• RTL: Register-Transfer Level

• SoC: System-on-Chip

• TTY: TeleTYpe (USB Class)

• VCD: Value Change Dump

10

1 Introduction

The 3rd Year Embedded Systems course of the Electrical Engineering department at

Imperial College London includes a coursework designed to teach students real-time

programming in a resource constrained system. The scenario of the coursework is a music

synthesiser where audio samples must be generated consistently to ensure audio without

glitches.

This project aims to extend the capabilities and performance of the existing educational

platform as the microcontroller currently used in the coursework is limited to a small

number of oscillators and basic audio effects. A key factor in the success of this project is

that a student should be able to interact with the provided gateware in a similar manner to

the existing coursework.

This project provides code for the gateware needed to run user-written programs, receive

communications from CAN protocol devices and produce audio waveforms consisting of 64

individual waves of specified frequencies, as well as demonstration software to control the

provided gateware via CAN frames or direct control via a console interface.

1.1 Report Structure

The report is structured as follows:

• Chapter 2 - Background - Determines the project base and goals and introduces

aspects of the project that are pre-determined, including the FPGA used and

external components present on the StackSynth Extension board.

• Chapter 3 - Analysis and Design - Lays out the architecture of the system and

connections between modules.

• Chapter 4 - Implementation - Details the design decisions made during

development and features of the project as completed.

• Chapter 5 - Testing and Results - Covers testing throughout the project used to

verify functional correctness of the design and measure performance.

• Chapter 6 - Evaluation - Evaluates the project on progress against the identified

objectives and areas that can be improved.

• Chapter 7 - Conclusions - Concludes the project, including insights into future

work.

11

2 Background

This section goes over the research and existing work that this project builds upon, as well

as key aspects of the project that inform the analysis and design stages. The sub-sections

focus on the StackSynth module, OrangeCrab board, LiteX framework, PCM1780 DAC, CAN

bus and ATA6561 transceiver.

2.1 Requirements Capture

The aim of this project is to extend the existing StackSynth platform that is used in the 3rd

Year Embedded Systems [1] with an FPGA accelerator to increase the audio performance

and capabilities of the StackSynth educational platform. The key motivators are to allow for

many more oscillators than is possible on the ST Nucleo L432KC as well as advanced effects

such as equalisation with multiple filter taps, as the available time for generating samples

on the L432KC is limited due to strict deadlines for sample timing to prevent audible

glitches.

The original brief mentions that using an FPGA would allow for “hundreds” of simultaneous

oscillators and filter taps, however the maximum number of oscillators and filter taps is

likely to be limited by the available logic on the FPGA fabric, as the selected model of FPGA

has 24,000 LUTs (look-up tables) to create logic blocks from. This is discussed later in the

FPGA Utilisation section. The brief also states that “a professional-grade sample rate and

resolution” should be achievable, so the industry standard for “CD-quality” is used as a

baseline giving a target of 16-bit 44.1kHz output, as higher bit depth and sampling rate is

often not perceived.

As the end goal is to have an educational aid, there are some quantitative targets for

usability. Using the FPGA accelerator should be an extension of the existing coursework,

with difficulty caused by intentional complexity of the project, not from implementation

details that cannot be changed by the student. The syllabus for the embedded systems

module [1] states learning objective including low-level communication, real-time

constraint analysis, interrupts and multi-threading. The FPGA extension will allow students

to program an embedded SoC and develop code to communicate with the main StackSynth

boards, using interrupt service routines and handlers.

The embedded SoC will run student developed code which handles various tasks including

communication with other StackSynth modules via the CAN bus, controlling the oscillators

and filter taps and processing of slower loops such as low-frequency oscillators and other

effects over longer periods of time. The digital logic blocks to be developed in this project

are the CAN receiver, sample generator and blocks to drive the various buses to control the

onboard DAC and amplifier.

12

The core contributions of this project are the following:

• Quarter-wave sine wave approximation CORDIC SystemVerilog module and multi-

wave generator LiteX module.

• PCM1780 Audio driver and Mode Control SystemVerilog and LiteX modules.

• CAN receiver SystemVerilog and LiteX module, used to receive and acknowledge

CAN frames from StackSynth boards.

• LiteX project including hardware interrupts, which can be used as a base for further

development.

• Demo code including programs and helper functions for interacting with custom

modules from software.

2.2 StackSynth Board

The StackSynth board is part of an educational platform designed to teach real-time

programming in the situation of a music synthesiser and is part of the 3rd Year Embedded

Systems module. It utilises the PlatformIO framework [2] which provides the HAL

(Hardware Abstraction Layer) and a port of the Arduino Framework (Stm32duino [3])

which allows for easier control of external pins of the microcontroller.

A music synthesizer is a good demonstration of real-time programming and prioritisation

of work, as latency in an audio stream is less important than interval consistency of audio

samples, resulting in strict deadlines for sample generation. The StackSynth board uses a

Nucleo STM32L432KC [4] board. which has an ARM Cortex-M4 core, as well as 11 timers

with varying precision and uses, and direct support for the CAN protocol in the provided

HAL as detailed in section 3.29 of the datasheet [5]. The timers are especially helpful for

setting task interval initiation interrupts, pre-empting lower priority tasks so that

deadlines are not missed.

The ARM Cortex-M4 core has support for some DSP (digital signal processing) instructions,

as defined in Table 3-2, ARM Cortex-M4 DSP Instructions [6], however these are not

optimised for operating on many samples in parallel or for the complex DSP operations of

an equaliser filter tap. FPGA logic operates simultaneously each clock cycle, so can operate

on every sample at once in a pipeline reducing the latency of audio effects.

Communication on the CAN bus will still be done on the StackSynth module, including note

down and note up events, defined by sending P or R in byte 0 of the CAN frame respectively,

in addition to student-defined messages such as waveform and filter settings if controlled

from a StackSynth module.

13

2.3 StackSynth FPGA Extension Board

Audio sample generation is subsequently handled on the FPGA extension board where

students will decode their CAN messages on the embedded SoC and then control the

oscillators and filters. The extension board has headers for attaching the OrangeCrab FPGA

module and a few chips along with passive components for tasks not handled within the

FPGA.

A Microchip ATA6561 CAN Transceiver along with connectors along the sides of the board

allow for detection of and communication with other StackSynth modules via the CAN bus.

The transceiver handles conversion from high and low logic states to recessive and

dominant states on the CANH and CANL pins and is discussed in more detail in the

ATA6561 CAN Transceiver section.

A Texas Instruments PCM1780 DAC is connected to the FPGA GPIO pins, with the output

connected to one 3.5mm headphone port and the input of an Analog Devices DS1881E-

050+ [7] digital potentiometer which is used to adjust the amplitude of the analogue

waveform providing volume control. This waveform is the input to a TS482IST [8] 100mW

stereo amplifier which provides enough amplification and power to drive low impedance

speakers and headphones via a second 3.5mm headphone port.

2.4 OrangeCrab Board

The OrangeCrab [9] is a development board built around the LFE5U-25F and LFE5U-85F,

which are part of the Lattice Semiconductor ECP5 family of FPGAs. For this project, the

LFE5U-25F model of the OrangeCrab was used due to limited availability and increased

cost of the larger FPGA model. The specifications of the LFE5U-25F are as follows: 24,000

LUTs, 1008Kb of embedded Block RAM, 194kb of distributed RAM, 28 18-bit multipliers

and 2 PLLs. The OrangeCrab also includes 128Mb of non-volatile QSPI flash used for storing

the bootloader/bitstreams/user-firmware, a MicroSD card slot and a 48MHz oscillator

used as a source for the system-clock PLL.

The OrangeCrab follows the Adafruit Feather [10] form factor, making it physically

compatible with FeatherWings which are stackable expansion boards for Feather boards.

This means the OrangeCrab could be swapped out for a more powerful board using the

same pin layout if required in the future. Various FPGA pins are routed to the external pins

of the board, allowing for direct connections from a design to external devices, which will

be used in this project to communicate with the ATA6561 CAN Transceiver, PCM1780 DAC

and TS482IST digital potentiometer.

The OrangeCrab hardware is released as open source under the CERN Open Hardware

Licence v1.2, along with firmware released under the MIT Licence in the GitHub Repository

14

[11]. Bitstreams for flashing the FPGA can be created with either Lattice Semiconductor’s

Diamond IDE or the open-source Project Trellis [12] toolchain which uses Yosys for

synthesis and nextpnr for placement and routing. Gateware and software examples are also

provided in another GitHub Repository [13].

The r0.2.1 board also features a USB-C port connected directly to pins on the FPGA,

allowing a design to present itself to USB hosts as a DFU (Device Firmware Upgrade), TTY

(Teletype), CDC (Communications Device Class), ACM (Abstract Control Model) or even a

composite USB device. Along with the pre-flashed bootloader, which presents a DFU

endpoint, the OrangeCrab can be flashed without an external programmer.

The USB port operates at USB 2.0 Full Speed (12Mbps) as higher speeds are not possible on

the ECP5. It can be used in user designs by instantiating a USB core, and the demo program

uses ValentyUSB [14], enumerating as a CDC-ACM device, which results in a COM port on

Windows and /dev/ttyACMx on Linux.

2.5 LiteX Framework

LiteX is a framework for creating FPGA cores and complex SoCs, using many provided cores

such as CPUs, DRAM interfaces and protocol buses, e.g., Wishbone, AXI, Avalon. LiteX is

used in this project as it provides many useful cores and makes connecting different blocks

together easier, reducing the time taken for this project to reach a working Proof of

Concept.

LiteX has support for a large range of boards, and the creator of the OrangeCrab added

support in litex-hub/litex-boards, PR #59 [15], including the necessary pin definitions and

Project Trellis [12] toolchain steps for creating the bitstream for the OrangeCrab r0.2(.1)

used in this project with Yosys and nextpnr targeting the Lattice Semiconductor ECP5.

The LiteX project initially built upon Migen [16], so many of the Migen cores are still

available and the overall method of defining modules, synchronous and combinatorial logic

remains in line with Migen. Migen - and by extension LiteX - is a DSL (Domain Specific

Language) using Python and the dictionary nature of all variables to provide terse syntax

for defining logic. This syntax is shown in Listing 1.

self.delay = Signal()
self.delay1 = Signal()
self.comb += self.delay1.eq(self.delay + 1)
self.sync += self.delay.eq(self.delay1)

Listing 1: Examples of defining combinatorial and synchronous logic in LiteX

After defining logic and instantiating blocks within a design, the provided Builder()

function iterates through the map of the defined BaseSoC object and converts the design to

15

a Verilog file representing the full design. The resulting Verilog file has ports for

connections to external pins, defined in the Pin Constraints File, and is synthesised using

Yosys, along with any SystemVerilog and Verilog files instantiated within the design using

the Instance() function. An example of this is shown in Listing 2, taken from

modules/testPropagation.py [17] where the saw2sin module is instantiated.

self.i_saw = Signal(16)
self.o_sin = Signal(16)
self.specials += Instance("saw2sin",
 i_i_clk = ClockSignal(),
 i_i_saw = self.i_saw,
 o_o_sin = self.o_sin,
)

Listing 2: Example using the Instance() function

The key components of LiteX used in this project are:

• GSD_OrangeCrab.Platform: defines connections from external FPGA pins to

peripherals, e.g., the QSPI flash, DDR3L RAM and board GPIO, as well as required

blocks such as clock sources, PLLs, the CPU and the USB PHY for serial

communication.

• ClockDomain: creates a new clock domain, used for the DAC system clock, driven at

36.864MHz as indicated in the PCM1780 datasheet for a 48kHz sample rate.

• Subsignal: defines collections of signals for easier pin assignment within modules.

• LiteScopeAnalyzer: a logic analyser placed alongside the SoC, sampling any

selected signals within the design at the system clock frequency, with values stored

in Block RAM and converted a VCD waveform file which can be viewed in GTKWave.

• Builder: converts the design object to a Verilog module and invokes Yosys and

nextpnr to synthesize and generate the FPGA bitstream.

• Module: creates a custom module that can be instanced and added as a submodule to

other modules or the BaseSoC.

• ModuleDoc: inheriting from this class results in the class docstring being used in the

autogenerated documentation, allowing the documentation of a module to be placed

alongside the module definition.

• CSRStorage: register object that is read/write from the CPU and read-only from

custom logic.

• CSRStatus: register object that is read-only from the CPU and driven from custom

logic.

• AutoCSR: inheriting from this class adds all detected CSRStorage and CSRStatus

blocks within a module to the CSR bus, providing preprocessor definitions for

16

register addresses as well as functions to read/write to the registers or individual

fields within the registers.

• Instance: creates an instance of an external Verilog or SystemVerilog module,

including connections from the module ports to the LiteX design.

• AsyncFIFO: core from the Migen library with read and write ports that can be in

different clock domains. Grey code is used to prevent metastability issues in the full

and empty flags. It is used to transfer generated samples from the system clock

domain at 48MHz to the DAC clock domain at 36.864MHz.

2.6 PCM1780 DAC

The PCM1780 [18] is a 2 channel DAC supporting 16-24bit samples at a 8-192kHz sampling

frequency. Audio samples can be input via I2S, right-justified or left-justified formats, and

separate buses are used for transferring audio samples or controlling the mode settings of

the DAC. The PCM1780 is used in this project to provide superior audio quality than other

methods of outputting audio from the FPGA, such as PWM (Pulse Width Modulation).

The PCM1780 settings are controlled via a 3-wire SPI-like interface, with a chip-select,

clock and data-in pin. No data is ever read from the DAC, so the data-out pin is not present.

The available settings are shown in Table 1, taken from “Table 5. User-Programmable Mode

Controls” of the datasheet [19].

Function Reset Default Register Bit(s)

Digital attenuation control 0 dB, no attenuation 16 + 17 AT1[7:0],

AT2[7:0]

Soft mute control Mute disabled 18 MUT[2:0]

Oversampling rate control ×64, ×32, ×16 18 OVER

Soft reset control Reset disabled 18 SRST

DAC operation control DAC1 and DAC2 enabled 19 DAC[2:1]

De-emphasis function control De-emphasis disabled 19 DM12

De-emphasis sample rate

selection

44.1 kHz 19 DMF[1:0]

Audio data format control 24-bit, left-justified 20 FMT[2:0]

Digital filter rolloff control Sharp rolloff 20 FLT

Digital attenuation mode select 0 to –63 dB, 0.5 dB/step 21 DAMS

Output phase select Normal Phase 22 DREV

Zero-flag polarity select High 22 ZREV

17

Function Reset Default Register Bit(s)

Zero-flag function select L-, R-channels

independent

22 AZRO

Table 1: PCM1780 User-adjustable Settings

The default settings for the PCM1780 are ideal for this project, though the digital

attenuation may be used as another point of volume control, possibly to normalise the

output volume regardless of the number of oscillators that are active. As such the only

settings that need to be modified are the attenuation level for the left and right channels.

The default settings also include the audio sample format of left-justified, which allows for

flexibility of the sample depth as a 16-bit sample is equivalent to a 24-bit sample where the

low 8 bits are 0. To give this output, a shift register can be used to output the sample bit by

bit, updated on the falling edge of the bit clock as shown in Appendix 10.1, from “Figure 22.

Audio Data Input Formats” of the datasheet [19]. The bit clock can run at 32x, 48x or 64x

the sampling frequency and can be selected for easier implementation within the

SystemVerilog design, though the bit depth is limited by lower bit clock frequencies.

The timing diagram of the control interface is shown in Figure 1, from “Figure 26. Control

Interface Timing” of the datasheet [19]. In the figure, MC pulse cycle time limits the

maximum frequency of the clock signal, and the value of 100ns results in a maximum

frequency of 10MHz. As the OrangeCrab has a 48MHz system clock, a 6MHz clock signal can

be generated using a 1:8 clock divider, simplifying the design and reducing delay / clock

skew. The timing diagram also shows setup and hold time requirements for the data signal.

18

Figure 1: PCM1780 Control Interface Timing Diagram

The data to be sent will be crossing from a 48MHz clock domain into a 6MHz clock domain,

but as the latter is derived from the former using logic, there is no risk of a change in phase

and metastability can be avoided by holding the value stable in the faster domain for

multiple clock cycles and buffering the value in the slower domain. In this design, the value

can be left constant until a new value is set as the action of setting the attenuation value is

idempotent and does not have a side-effect from being repeated.

2.7 CAN Bus

The CAN (Controller Area Network) bus is a differential serial bus used for communication

between devices, typically in automotive applications due to its ability to withstand

electromagnetic interference and wiring simplicity requiring only a twisted pair of wires

common to all devices on the bus. The Wikipedia page [20] for the CAN bus provides an

overview including key features of the protocol, however for timing and implementation

specifics, the Bosch CAN Specification 2.0 [21] and Texas Instruments: Introduction to CAN

[22] documents were used as reference material.

The CAN bus is a multi-master bus, so any device can transmit at any time. In order to

prevent collisions and loss of data, a form of arbitration is used to select which device has

priority. This is done by assigning each message a unique ID, and the device with the lowest

ID wins arbitration. This is inherent to the design of the CAN bus as transmitting a 0 is done

by asserting the dominant state on the CANH and CANL signals and each device measures

19

the state of the bus to determine if it should stop transmitting, so a device transmitting a

recessive state will still be able to detect the dominant state. This is shown in Figure 2,

where device A uses a lower ID than device B and so device B stops transmitting when it

detects the dominant state on the bus at the red cross.

Figure 2: CAN bus arbitration, where A sends a frame with a lower ID and wins arbitration.

In this project, low-speed CAN is used as the data to be transferred between devices is a

few bytes at a time and limited by the student code on each StackSynth module. In addition,

the length of the CAN bus is determined by how many StackSynth devices are chained

together, resulting in ~15cm per module so electromagnetic interference is unlikely to be

an issue. On the StackSynth FPGA Extension board, the CAN bus signalling is handled by a

Microchip ATA6561 Transceiver, as detailed in the ATA6561 CAN Transceiver section.

Two key features of low-speed CAN are: a bit rate of 125k baud, resulting in ~8us per bit

for propagation and sampling across the bus or 384 cycles at the 48MHz system clock of

the OrangeCrab; and differential signalling, where the exact voltage levels of CANH and

CANL are not important, but the polarity of the difference between the two signals (CANH -

CANL) is used to determine the state of the bus, further reducing the impact of

electromagnetic interference.

An important requirement of all CAN variants is that each frame must be acknowledged by

at least one other device on the bus, otherwise the transmitting device may choose to

retransmit the frame indefinitely or enter an error state. In the case of the StackSynth

module, this results in the user-program CAN transmit queue being full, and the program

blocking when attempting to add a new transmit message to the queue. The ATA6561

Transceiver does not contain any logic for automatically acknowledging frames, so the ACK

signal must be generated within the FPGA logic. This is done by checking the ID of the

received frame against a CAN receive ID filter after masking with a filter ID mask, and then

20

driving the bus to a dominant state during the ACK bit of the frame if the frame is valid.

Figure 3, from “Section 3.1.1 Data Frame” of the Bosch CAN Specification 2.0 [21]

document, shows the ACK slot where a receiver transmits a dominant state overriding the

transmitters recessive state.

Figure 3: CAN frame format of ACK field.

The CAN Specification also indicates that the bus should be sampled at 75% of the “bit

time”, or 6us into a bit for a 8us period in low-speed CAN. This precise timing is maintained

by synchronising every device on the CAN bus with each incoming recessive to dominant

transmission. This occurs at the start of each frame as well as throughout the frame, at least

as often as every 10 bits due to the presence of stuffed bits, preventing a build-up of clock

skew and errors in sampled bits.

The CAN protocol is a NRZ (Non-Return-to-Zero) protocol, meaning consecutive bits of the

same polarity result in no change in the bus state. If many consecutive bits of the same

polarity were transmitted, this could result in devices losing synchronisation with each

other if there were differences in internal clock frequencies and timing. To prevent this, bit

stuffing is used, where extra bits of opposing polarity are added after a sequence of

consecutive bits of the same polarity, with stuffed bits counting towards the sequence of

consecutive bits. In CAN, a stuffed bit is added after 5 consecutive bits of the same polarity,

so a stuffed bit can occur after every 4 non-stuffed bits. This is shown in Listing 3, where a

sequence of 10 bits is stuffed to a length of 12 bits, with the 6th and 11th bits being stuffed

bits indicated in red. An error occurs on the CAN bus if 6 consecutive bits of the same

polarity are detected, except for the End-Of-Frame marker which has no stuffed bits and is

always 7 consecutive 1s.

0000011110 → 000001111100

Listing 3: Example of bit stuffing, where the red bits are stuffed bits added to the sequence

21

A complete CAN bus frame is shown in Figure 4, from the CAN bus Wikipedia page [20],

where the frame ID is 0x14 and the frame contains 1 byte of data. In the case of the

StackSynth module, the data length is hardcoded to 8 bytes within the CAN helper library,

with unused bytes being ignored by the receiving device.

Figure 4: CAN Frame format, this frame contains 1 byte of data

In addition to the frame ID, data length and data bytes, the CAN frame also contains a CRC

(Cyclic Redundancy Check) field which allows for detection of errors in the received frame.

This is calculated using the generator polynomial 𝑥15 + 𝑥14 + 𝑥10 + 𝑥8 + 𝑥7 + 𝑥4 + 𝑥3 + 1

as prescribed in the Bosch CAN Specification 2.0 [21] with the input sequence of the Start-

Of-Frame, Frame ID, Control Field (ID extension bit, reserved bit and data length code) and

Data Field. As described in the CAN specification, this can be implemented using a shift

register with an XOR with 0x4599 when the next incoming bit is high. The CRC is then

transmitted in the CRC field of the CAN frame, and the receiving device can calculate the

CRC of the received frame and compare it to the received CRC to determine if the frame is

valid. If the CRC is not valid, the frame is discarded, and the receiving device does not

acknowledge the frame.

2.8 ATA6561 CAN Transceiver

The Microchip ATA6561 [23] is a CAN and CAN-FD capable Transceiver chip that provides

a physical interface from a CAN protocol controller to the CANH and CANL pins as well as

protection against ESD and other faults on the CAN bus such as electrical short-circuits that

could occur when (dis-)connecting StackSynth modules. It is used to convert CAN protocol

bits from the FPGA to differential signals required on the CAN bus and includes support for

3.3/5V tolerant inputs and outputs, allowing direct connections to microcontroller or FPGA

external pins without level shifting. This direct connection is possible due to the STBY and

TXD inputs being connected to the VIO pin via internal pull-up resistors and the RXD output

being driven from VIO via a pair of MOSFETs as shown in Figure 5, taken the Functional

Block Diagram on page 3 of the ATA6561 datasheet [24].

22

Figure 5: ATA6561 Functional Block Diagram

The ATA6561 also provides protection to the CAN bus from the CAN controller in two key

situations. First, if the RXD pin is driven high externally, such as an accidental logic-high

output from the FPGA or a short-circuit to VCC, this represents a recessive state and would

prevent a CAN controller from detecting a dominant state on the CAN bus, causing

arbitration to fail. Second, if the TXD pin is driven low for longer than the TXD dominant

timeout, the CANH and CANL pins are disconnected (high impedance) as driving a constant

dominant state on the CAN bus would block all other network communication. This timeout

is reset when the TXD pin is driven to logic high.

The transceiver has 4 operating modes, however only Normal mode is used, as this allows

for monitoring of the CAN bus via the RXD pin, and driving the CAN bus to the dominant

state when TXD is driven low, such as for acknowledging a received frame. The other

23

modes are Unpowered, Standby and Silent, which are either not useful in operation, or in

the case of Silent, is not accessible on the ATA6561 by the user, and only occurs when an

error is detected on the CAN bus. Finally, the ATA6561 is a clockless and combinatorial

device, and can be treated as a direct connection from the FPGA to the CAN bus. The FPGA

logic keeps track of bit timing and drives the TXD pin as needed.

3 Analysis and Design

This section presents a high-level overview of the design of the system, and details design

decisions that apply to the overall system rather than a specific area of implementation.

Changes that were made to the design during implementation are discussed in the

Implementation section.

Figure 6vis a block diagram representation of the StackSynth FPGA Extension board

including SoC and external Integrated Circuit components that are integral to the project

function. Dotted lines represent analogue signals, which includes the stereo audio signals

from the PCM1780 DAC, through the DS1881E digital potentiometer and through the

TS482 amplifier and 3.5mm headphone port. Thinner solid lines are single bit digital

signals, including clock signals and serial bit connections, while thicker solid lines are

multi-bit digital signals or buses, including UART and the CSR bus. Later in the project, the

VexRiscV CPU was replaced with a PicoRV32 CPU for testing a basic software

implementation of interrupts, however the overall architecture of the system remained

unchanged.

The block diagram is also colour coded to represent the different areas of the system, with

physical components confirmed at the start of the project in red, parts of the OrangeCrab in

orange, LiteX provided modules on the FPGA in blue, and modules created in this project in

green. The FTDI USB to UART adapter is shown in the diagram as it is used to download

traces from the LiteScope Analyzer, however it was not provided as part of the project and

is external to the StackSynth FPGA Extension board.

24

Figure 6: System Architecture Overview

25

System Architecture Overview

In Figure 6, the Wave Sample Generator Block represents a conversion from settings

controlled from the CPU via the CSR bus to the final output samples sent to the DAC. A key

design decision within this block is the generation of sample values when required without

the use of a large wavetable. The OrangeCrab has limited Block RAM and a large memory

would be required to provide the resolution desired for phase to sine wave conversion, for

example, using a 16-bit phase to index a table with 2^16 or 65536 entries would require

1049Kb of Block RAM, more than the 1008Kb available on the ECP5 model used. Instead, a

larger phase accumulator can be used, allowing for more precise phase steps providing

better accuracy as the error is smaller, and minor errors due to rounding are averaged out

over multiple cycles, reducing the likelihood of audible glitches. This phase accumulator

can then be truncated to 16 bits by ignoring the lower 8 bits and used for sample

generation. Figure 7 shows the submodules within the Wave Sample Generator Block,

including the CORDIC and GenerateWave modules.

Figure 7: Wave Sample Generator Block internal structure

The Async FIFO block handles the transfer of generated samples from the system 48MHz

clock domain to the 36.864MHz DAC clock domain, as the write port is driven by the

system clock and the read port is driven by the DAC clock. This block is required as the DAC

clock is not a multiple of the system clock, nor does it divide from the system clock, so

multiple buffers may not prevent metastability. The samples are then fed into the DAC

Driver which uses an internal counter to generate the bit clock at 2.304MHz and left-right

clock at 48kHz.

The final major design choice in this project is to use SystemVerilog (IEEE 1800-2017),

including constructs such as always_comb and always_ff blocks over Verilog always blocks

and logic over wire or reg. This choice was made for a number of reasons, including the

26

extra compile time checks and readability as the block is immediately identifiable as

combinatorial or synchronous logic and the ability to use newer open-source tools for

checking code quality and semantic correctness when writing the required blocks for logic

not already provided by LiteX. However, the SystemVerilog constructs supported by the

open-source version of Yosys used in Project Trellis are limited, so the code must still be

written so that it can be synthesised by Yosys.

The first tool used is svlint [25], a SystemVerilog linter that provides a large range of

syntax and style rules with the goal of improving code readability and maintainability,

including rules to reduce simulation and synthesis errors due to mismatches in intent and

implementation. The VSCode [26] extension svlint-vscode [27] is a language server

client and communicates with svls [28], a language server built around svlint, providing

compatibility with the Language Server Protocol and allowing for in-editor syntax

highlighting and linting.

The second tool used is slang [29], a SystemVerilog parser and compiler with

comprehensive support for the IEEE 1800-2017 SystemVerilog syntax. This tool is used to

check for syntax errors in the SystemVerilog code as well as semantic errors such as

mismatches in signal widths and types or invalid variable names including suggestions

based on existing signals in the current file. An online version is available [30], with an

editor on the left and a live compiler output on the right, however the tool can also be

compiled and used offline.

4 Implementation

This section details the implementation of the project, with sub-sections covering different

areas of the final implementation. These sub-sections do not represent the order of

implementation, but rather logical grouping to keep relevant decision and design aspects

together. Areas for further work are also briefly discussed, with further detail in the

Conclusions and Further Work section. The implementation is available in the GitHub

repository: supleed2/EIE4-FYP [31].

4.1 Setting up the LiteX Framework

As this project is built using the LiteX Framework, the project implementation begins with

setting up the framework and creating a basic SoC including a custom module and

connections from the CPU to the module so that the module can be controlled from

software running on the CPU. A LiteX project consists of a main Python script that creates a

class instance representing the SoC to be built including all peripherals and sub-modules,

make.py in this project. This file is based on the gsd_orangecrab.py target file from the

litex-boards GitHub repository [32], with modifications made to add the custom modules

https://github.com/dalance/svls
https://github.com/MikePopoloski/slang
file:///C:/Users/suple/Desktop/fyp-writeup/make.py
https://github.com/litex-hub/litex-boards/blob/master/litex_boards/targets/gsd_orangecrab.py

27

created as part of this project and debugging tools such as the LiteScope Analyzer. The

build script uses the OrangeCrab platform class, which defaults to a VexRiscV-Standard

CPU as the SoC core but can be overridden from the command line with the --cpu-type

and --cpu-variant flags.

An initial test of custom module creation was performed by replacing the LiteX-provided

LedChaser with a custom module that reads a value set from a CSR and outputs the 3 PWM

signals for the red, green and blue pins of the user_led (LED on the OrangeCrab). The

TestRgb module creates a CSRStorage memory representing the target RGB value for the

LED in 24 bit colour, and this register is connected to an input of the ledPwm SystemVerilog

module where an 8 bit counter increments at the 48MHz system clock and the output is

high if the target value is greater than the counter value for each LED channel. The three

output pins are then connected using a comb statement to the LED pin objects within the

LiteX module, and the SystemVerilog source file is added to the list of sources provided to

Yosys for synthesis. The LiteX and SystemVerilog modules are included in Listing 4 and

Listing 5 respectively for reference.

class TestRgb(Module, AutoCSR, ModuleDoc):
 """
 RGB LED Test Module
 """
 def __init__(self, platform, pads):
 self.pads = pads
 self._out = CSRStorage(size = 24, description="Led Output(s) Value",
 fields = [
 CSRField("ledb", size = 8, description = "LED Blue Brightness"),
 CSRField("ledg", size = 8, description = "LED Green Brightness"),
 CSRField("ledr", size = 8, description = "LED Red Brightness"),
])

 leds = Signal(3)
 self.comb += pads.eq(~leds)
 self.specials += Instance("ledPwm",
 i_clk = ClockSignal(),
 i_rgb = self._out.storage,
 o_ledr = leds[0],
 o_ledg = leds[1],
 o_ledb = leds[2]
)
 platform.add_source("rtl/ledPwm.sv")

Listing 4: TestRgb LiteX Module

file:///C:/Users/suple/Desktop/fyp-writeup/modules/testRGB.py
file:///C:/Users/suple/Desktop/fyp-writeup/rtl/ledPwm.sv

28

`default_nettype none

module ledPwm
(input var clk
, input var [23:0] rgb
, output var ledr
, output var ledg
, output var ledb
);

logic [7:0] counter;

always_ff @(posedge clk)
 counter <= counter + 1;

always_comb ledr = (rgb[23:16] > counter);
always_comb ledg = (rgb[15: 8] > counter);
always_comb ledb = (rgb[7: 0] > counter);

endmodule

Listing 5: ledPwm SystemVerilog Module

To test this module, the generated functions in generated/csr.h of the build output

directory provide convenient functions for reading from and writing to CSR locations. The

demo program [33] has a function void leds_cmd(char** val) which allows the value of

the CSR to be updated from the Serial Console that is accessible when the OrangeCrab is

connected to a computer via USB. While testing this module resulted in immediately

noticeable changes in the output colour of the LED, adding a reset pin caused the design to

stop working, and further testing revealed the cause to be a mismatch in active-high vs

active-low logic.

The SystemVerilog module was designed with an active-low reset, as this is commonly used

in FPGA and ASIC designs, as an active-low reset will be automatically triggered as a device

is powered on. However, the ResetSignal() function within LiteX provides access to an

active-high reset, so the SystemVerilog block would be held in the reset state indefinitely.

This could either be fixed by changing the SystemVerilog module to use an active-high

reset, or by inverting the reset signal as it connects to the module using the Python

inversion operator. The latter was chosen as it allows the SystemVerilog modules to match

the norm of active-low resets and the reset connection was written as ~ResetSignal().

Also of note in Listing 4 is the pads input of the module, as this is a dictionary containing

the external pin definitions used to connect to the user_led. This dictionary is created by

29

requesting a port from the platform object and is shown in Listing 6 where the pins are

requested together and Listing 7 where the pins and the logic standard used is defined in

the OrangeCrab platform.

self.leds = TestRgb(
 platform = platform,
 pads = platform.request_all("user_led")
)

Listing 6: Request user_led pins from platform in definition of TestRgb

("user_led", 0, Pins("K4"), IOStandard("LVCMOS33")), # rgb_led.r
("user_led", 1, Pins("M3"), IOStandard("LVCMOS33")), # rgb_led.g

("user_led", 2, Pins("J3"), IOStandard("LVCMOS33")), # rgb_led.b

Listing 7: Definition of user_led pins in OrangeCrab platform

4.2 Generating Audio Samples

This section covers the Wave Sample Generator Block mentioned in the Analysis and

Design section, which corresponds the LiteX GenerateWave [34] module in the project files.

Audio samples are created in the system and main 48MHz clock domain. This is done to

allow the samples to be generated at a higher frequency than the audio sample rate and

allows the values of the CSRs to be directly read by the SystemVerilog sub-modules without

the need for a clock domain crossing or synchronisation to prevent glitches. The LiteX

module contains three CSRStorage slots for controlling the oscillators: an oscillator index

to select which oscillator to modify, the target frequency of the selected oscillator, and the

waveform of the selected oscillator from sawtooth, square, triangle or sine. When either the

target frequency or waveform CSR is written to by the CPU, a pulse is created indicating the

respective setting was written to. Depending on which pulse is detected, the genWave

SystemVerilog module updates the internal settings for the oscillator indicated by the index

CSR for either the target frequency or waveform.

4.2.1 Phase-Step Calculation

These target frequencies are then converted to phase step values for a 24-bit phase

accumulator that increments at the sampling frequency of 48kHz. A 48kHz clock is created

using a clock divider driven by the system 48MHz clock and is used as it is a common

sampling frequency, higher than the standard “CD-quality” sampling rate and allows for

1000 cycles per sample for calculation of each sample. The phase step values for each

oscillator are updated from the target frequency values sequentially, and as these updates

are done at one oscillator per cycle, the phase step values are updated within the time for

one sample, resulting in a maximum increase in latency of one sample for changes to target

frequency. This change allows for one multiplier block to be shared rather than using one

30

per oscillator, which would limit the number of oscillators as the Lattice LFE5U-25F has 28

multipliers. The equation used to calculate the phase step value is shown in Listing 8,

where 224 is the number of values possible in the 24-bit phase step calculation, and 48000

is the sampling frequency.

Phase Step =
224

48000
× Target Frequency ≈ 349.525. . .× Target Frequency

Listing 8: Equation for calculating phase step values

Listing 9 shows the SystemVerilog implementation of this equation, where the

multiplication is approximated with a multiplication by 699 followed by a shift right to

divide by 2. The value is shifted another 8 bits to truncate the 24-bit value to a 16 bit value

used in the remaining logic, however this step could be removed if the phase accumulator

was extended to 24 bits.

logic [23:0] int_phase_step; // Phase step calc from target frequency
always_comb int_phase_step = (24'd699 * t_freq[ps_clk]); // 699 approx (2^24

/ 48000) * 2

logic [15:0] phase_step [0:63]; // Shift step right correctly (2^9)
always_ff @(posedge i_clk48) phase_step[ps_clk] <= {1'b0, int_phase_step[23:9

]};

Listing 9: SystemVerilog implementation of phase step calculation

4.2.2 Phase to Amplitude Conversion

Once per 48kHz cycle, each phase accumulator is incremented by the respective phase step

value for that oscillator. Along with the phase to amplitude converter, this forms a

numerically controlled oscillator. Numerically controlled oscillators are commonly used in

digital signal processing, PLLs and many radio systems. [35] [36] Key benefits include

dynamic frequency control and phase adjustment, frequency accuracy and ease of

implementation. The phase accumulator can be simplified by aligning the overflow point

with the point where the phase accumulator would be reset to 0, or equivalently, if the

phase accumulator is stored using N bits, a value of 2^N represents an angle of 360°.

For the sawtooth, square and triangle waveforms, direct bit-level conversions are used

from the phase input. Conversion from phase to a sine wave is done in the saw2sin

SystemVerilog module, which is a wrapper around a quarter wave CORDIC module. The

cordic SystemVerilog module has a 16-bit phase input which represents phase inputs 0° -

90°, and outputs a 16 bit amplitude which represents the sine output from 0 to 1. The

conversion from 0° - 360° to 0° - 90° for input to the CORDIC module is done by the

saw2sin module, which also converts the quarter wave output into a full wave. Table 2

31

shows the subtraction of the phase input and inversion of the output required to convert

the quarter wave CORDIC module into a full sine wave, where reversing the input refers to

65535 − ((𝑥 mod 16384) × 4).

Table 2: Conversion flags of quarter wave CORDIC module to full wave

4.2.3 Sine Wave Approximation

For converting a phase input to a sine amplitude, a CORDIC block is used. An initial attempt

using a polynomial approximation was tested using a cocotb testbench, similarly to the

final CORDIC module as explained in the testing section, Phase to Amplitude Conversion.

This resulted in an accurate amplitude output, and a graph using the Desmos graphing

calculator [37] is shown in Figure 8, where the polynomial approximation is shown in red

and overlaps the reference sine wave in blue. The green line shows the final expected

output from the saw2sin module. Synthesis of this polynomial approximation block

resulted in 191% utilisation of the TRELLIS_COMB blocks, causing placement to fail.

Figure 8: Polynomial approximation of sine wave, scaled to 16-bit input and output values

Instead, a CORDIC SystemVerilog module was built while following a ZipCPU blog post on

Using a CORDIC to calculate sines and cosines in an FPGA [38] for explanations on the ideas

behind the CORDIC algorithm. The CORDIC module was built to use 16-bit inputs and

outputs, and the phase input represents a range of 0° - 90°. The cordic SystemVerilog

Phase Range phase[15] phase[14] Reverse CORDIC Input Negate CORDIC Output

0° - 90° 0 0 No No

90° - 180° 0 1 Yes No

180° - 270° 1 0 No Yes

270° - 360° 1 1 Yes Yes

32

module was then instantiated within the saw2sin module where it is used to recreate a full

cycle of the sin wave.

Initial testing of the CORDIC module revealed that the algorithm was not accurate at

extreme input values. For very small phase input values, the resulting values were too

large, and for very large phase input values, the resulting values sometimes decreased as

the phase increased. The issue at large phase input values was worked around by

outputting a maximum output value if the input phase was above a certain threshold,

65508 in this case, as this matched the reference Python function. The issue at small phase

input values was worked around by implementing a small angle approximation, where the

output value is equal to 1.5x the input value for inputs below 32. The value of 1.5 was used

for simplicity in implementation due to needing one right shift and one addition. The

resulting CORDIC module performed much better and is the version tested in the testing

section, Phase to Amplitude Conversion, including adjustments to further improve accuracy

and reduce error.

This completed saw2sin block now output a full sine wave, however the output was in the

range of 0 to 65535 but the PCM1780 DAC uses signed values in the range -32768 to

32767. The effect of this is seen in Figure 9 where the resulting wave is discontinuous. To

fix this, the MSB of the saw2sin amplitude output was inverted, as this is equivalent to

adding half the maximum value, and the resulting audio output is shown in Figure 10.

Figure 9: Sine wave output when using unsigned values

33

Figure 10: Sine wave output when using signed values by inverting the MSB

During testing, glitches in the output wave were discovered. These glitches were likely caused
by the long critical path due to the combinatorial cordic module, so the output was changed
to a registered output and the output sampled after multiple cycles. This is discussed further
in the testing section, Listing 21: SystemVerilog saw2sin module, excerpt of adjusting
amplitude offsets

CORDIC propagation delay.

In addition to using the value of the CORDIC module after multiple cycles, the design was to

be expanded to multiple simultaneous oscillators, however instantiating a CORDIC module

for each oscillator would result in wasted logic as the modules would remain unused for

most cycles out of the 1000 cycles available per 48kHz sample when running at 48MHz.

To make better use of available resources, a single CORDIC module was instantiated and

each phase to amplitude conversion done sequentially, in a basic form of time division

multiplexing. The low 2 bits of a 48MHz counter were used to load the next phase value at

step 0 and capture the resulting amplitude at step 3.

4.2.4 Combining Oscillators

The final stage of generating audio samples involves combining the samples from each

individual oscillator into a single sample. As a single oscillator already has the maximum

amplitude, the individual samples are sign extended to 24 bits before being summed into a

single sample. To maintain a more consistent volume, the final sample is also shifted to the

right to keep the maximum amplitude within the range of a 16-bit signed value.

The amount to shift by is calculated as the logarithm base 2 of the number of currently

active oscillators minus one, so one oscillator is unaffected, two are halved and three or

four are divided by four. The resulting sample will have a maximum amplitude that is

between 0.5 and 1 times the maximum amplitude of a single oscillator, depending on the

34

number of active oscillators. The SystemVerilog code for combining the individual samples

is shown in Listing 10.

// Add up sign extended samples
always_comb samples_long[0] = {{8{samples[0][15]}}, samples[0]};
for (genvar i = 1; i < 64; i++) begin: l_gen_sample_long
 always_comb samples_long[i] = samples_long[i-1] + {{8{samples[i][15]}}, sam

ples[i]};
end

// Count number of active oscillators
always_comb waves_count[0] = (phase[0] != 16'd0);
for (genvar i = 1; i < 64; i++) begin: l_gen_waves_count
 always_comb waves_count[i] = waves_count[i-1] + (phase[i] != 16'd0);
end

always_comb wv_cnt_1 = waves_count[63] - 1; // Subtract 1 from wave count

always_comb shift = /* logic to calculate shift amount */;

// Shift output sample right to get normalised output
always_ff @(posedge i_clk48) samples_sum <= samples_long[63] >> shift;

always_comb o_sample = samples_sum[15:0]; // Truncate output to 16 bits

Listing 10: Combining individual oscillator samples into a single signed sample

4.3 Transferring samples across clock domains

After the signed 16-bit samples have been generated, they must be transferred from the

48MHz system clock domain to the 36.864MHz DAC clock domain. Table 3 shows Table 1

from the PCM1780 datasheet [19], where a sampling frequency of 48kHz allows for the

following DAC system clock frequencies: 6.144MHz, 9.216MHz, 12.288MHz, 18.432MHz,

24.576MHz, 36.864MHz. Of these, 36.864MHz allows for the greatest number of cycles per

sample increasing the precision of the DAC driver SystemVerilog module, at 768 cycles per

sample. The DAC system clock is generated by a PLL primitive block provided by the Lattice

ECP5 FPGA, which is configured to use the 48MHz system clock as the input clock, and the

36.864MHz DAC system clock as the output clock.

Sampling

Frequency (kHz) System Clock Frequency (MHz)

x fS 128 192 256 384 512 768 1152

35

Sampling

Frequency (kHz) System Clock Frequency (MHz)

8 1.024 1.536 2.048 3.072 4.096 6.144 9.216

16 2.048 3.072 4.096 6.144 8.192 12.288 18.432

32 4.096 6.144 8.192 12.288 16.384 24.576 36.864

44.1 5.6448 8.4672 11.2896 16.9344 22.5792 33.8688 –

48 6.144 9.216 12.288 18.432 24.576 36.864 –

88.2 11.2896 16.9344 22.5792 33.8688 – – –

96 12.288 18.432 24.576 36.864 – – –

192 24.576 36.864 – – – – –

Table 3: PCM1780 - Table 1. System Clock Frequencies for Common Audio Sampling
Frequencies

Transferring the samples is achieved using an Asynchronous FIFO where the read and

write ports can be accessed from different clock domains. LiteX provides modules called

AsyncFIFO and ClockDomainCrossing, however both require a layout parameter, and no

documentation is present for the format of this parameter so these modules were not used.

An initial attempt was also made to design an Asynchronous FIFO from scratch following a

ZipCPU Blog Post on Crossing clock domains with an Asynchronous FIFO [39] however

further research through the source files of the LiteX project revealed the Migen AsyncFIFO

[40] module. This module is derived from a _FIFOInterface class alongside documentation

of the signals that are available and their expected connections to other modules.

The Migen AsyncFIFO module uses grey counters to keep track of the read and write

pointers within the FIFO, preventing single bit flips from causing large glitches in the

pointer values as they cross between the read and write port clock domains. In practice, the

FIFO will be written to and read from at 48kHz from both clock domains, with large pauses

between each sample from the perspective of both clock domains. In addition, the LiteX

report states the frequency of the DAC clock domain is likely to be closer to 36.92MHz

which means the FIFO will be read more often than it is filled and should never reach the

full state nor cause the sample generation to stall. The excerpt from the LiteX report is

shown in Listing 11, where the DAC system clock output is clko2 and the clko0 and clko1

outputs drive half and double system frequency clocks used for required primitive

modules.

INFO:ECP5PLL:Config:
clko1_freq : 24.00MHz
clko1_div : 20
clko1_phase: 0.00°
clko0_freq : 96.00MHz

36

clko0_div : 5
clko0_phase: 0.00°
clko2_freq : 36.92MHz
clko2_div : 13
clko2_phase: 0.00°
vco : 480.00MHz

Listing 11: LiteX report excerpt showing DAC clock frequency

4.4 Driving the DAC (PCM1780)

The PCM1780 has a 3 wire audio interface, consisting of a bit clock, a left-right clock, and a

data line. The bit clock indicates when the data line should be sampled for each bit, as the

value of the data line is updated on the falling edge of the bit clock. For the default left-

justified data format, left-right clock high indicates the current data is for the left channel

and low indicates the current data is for the right channel. The data is sent MSB first,

aligned to the falling or rising edge of the left-right clock and falling edge of the bit clock.

Figure x.y in the background PCM1780 section shows the timing diagram for the default

left-justified data format.

In this project, the bit clock is driven at 48 times the sampling frequency or equivalently

1/16 times the DAC system clock of 36.864MHz giving a frequency of 2.304MHz and is

generated using a clock divider from the DAC system clock. This allows for 48 bits to be

transferred in each period of the 48kHz left-right clock, or 24 bit left and right channel

samples. In this project, the low 8 bits are left as 0s to extend the 16-bit samples from the

wave generator, however the wave generator can be updated to generate 24 bit samples if

required. Verification of the DAC driver was performed using the LiteScope Analyzer,

which is detailed in the LiteScope Analyzer section.

The PCM1780 mode bus is driven from the dacAttenuation SystemVerilog module as

attenuation was identified as the only setting that may need to be user-adjustable. This

module operates in the main 48MHz clock domain and divides the incoming clock by 8 to

produce a 6MHz clock, which is below the 10MHz limit specified in the PCM1780 datasheet.

Two shift registers are used to drive the chip select and data pins, shifting out a new value

on each falling edge of the 6MHz clock signal. These shift registers are reloaded when an

input valid signal is high, detected by creating a buffer register to hold the signal high for

long enough to be detected in the slower 6MHz clock domain. An excerpt of the data shift

register is shown in Listing 12.

logic [34:0] data;
always_ff @(negedge o_clock) // Update DATA on falling edge of CLOCK
 if (!i_rst48_n) {o_data, data} <= 36'h000000000;
 else if (valid[7]) {o_data, data} <= {8'd16, volume, 2'd0, 8'd17, volume, 2

37

'd0};
 else {o_data, data} <= {data, 1'b0};

Listing 12: Excerpt of the dacAttenuation data shift register

Testing of the design with both the dacDriver and dacAttenuation SystemVerilog modules

instantiated in the top level design resulted in the design failing to boot. When either

module is instantiated without the other, the design appears to boot correctly, however

debugging the design when both modules are present is difficult as the LiteScope Analyzer

does not function when the design fails to boot. After discussing the issue with the project

supervisor, it was decided that the dacAttenuation module can be removed from the design

at this stage as it is not required for a Proof-of-Concept demonstration.

4.5 Using LiteScope Analyzer

The LiteScope Analyzer module is added to the design at the end of the BaseSoC class in

make.py in the main system clock domain. The memory depth is calculated using the length

of the signals being captured to prevent going over the available DP16KD memory blocks

as this results in placement failing after elaboration and synthesis has already run.

LiteScope Analyzer captures every signal on each clock rising edge of the clock domain it is

instantiated in. For signals that change less often than every cycle, this results in many

redundant samples being captured. The samplerate variable is only used in writing the

analyzer.csv file and does not affect the actual sample rate of the module. A custom

version of the module was created with a clock divider on the clock input to reduce the

sample rate however this modification caused the design to fail to boot even when using

the LiteX primitive Counter block and so the original module was used. The memory

limitation was worked around by reducing the signals captured to the minimum needed for

debugging or testing logic at a higher frequency before slowing it down to the intended

frequency after testing.

The module is also connected to a second Wishbone UART module as a separate connection

is needed to download the captured waveform data from the FPGA to the host computer for

viewing. Two unused external pins are used as RX and TX pins for this UART module and

connected to an FTDI232 USB to serial converter. The baud rate is also increased to

921600 baud to increase the download speed of the waveform data, which is stored in a

.vcd file. Listing 13 shows the LiteScopeAnalyzer instance including defining the signals

to be captured, the capture memory depth and a CSV file containing information about the

module and signals to be captured.

self.add_uartbone(name="debug_uart", baudrate=921600)
from litescope import LiteScopeAnalyzer
signals = [

file:///C:/Users/suple/Desktop/fyp-writeup/make.py

38

 self.audio.dac_lrck,
 self.audio.dac_bck,
 self.audio.dac_data,
 # ... other signals to capture
]
from math import ceil, floor
analyzer_depth = floor(190_000 / ((ceil(sum([s.nbits for s in signals]) / 16)

) * 16))
self.submodules.analyzer = LiteScopeAnalyzer(
 analyzer_signals,
 depth = analyzer_depth,
 clock_domain = "sys",
 samplerate = sys_clk_freq,
 csr_csv = "analyzer.csv",
)

Listing 13: LiteScope Analyzer instance in make.py

The LiteScope Analyzer instance is then accessed from the host machine using the

litex_server command to start a TCP server that connects to the UART converter, and the

litescope_cli command to connect to the TCP server, select trigger signals/values, and

dump the received waveform data to a VCD file. The created VCD file can be viewed using

programs such as GTKWave. LiteScope Analyzer was used to verify the correct operation of

the AsyncFIFO and dacDriver modules. Testing the AsyncFIFO module involved checking

the correct transfer of values across the clock domain crossing as well as the assertion of

the back-pressure and ready flag signals. Figure 11 shows the waveform VCD as viewed in

GTKWave, with the LiteScope Analyzer sampling at 48MHz.

Figure 11: GTKWave screenshot of AsyncFIFO waveform

A similar process was used in verifying the 3 signal outputs of the dacDriver module. The

waveform was captured starting with a rising edge of the left-right clock, and the resulting

signals compared to the expected values from the datasheet, as seen in Appendix 10.1.

Figure 12 shows the waveform VCD as viewed in GTKWave, with the LiteScope Analyzer

sampling at 48MHz.

39

Figure 12: GTKWave screenshot of DAC driver waveform

4.6 Receiving CAN Frames

A CAN receiver is required within the FPGA fabric to handle ACK signal generation and act

as an interface between the CPU within the SoC and the external ATA6561 CAN

Transceiver. The can SystemVerilog module contains logic for filtering of received CAN

frames by ID and generation of ACK bits for accepted CAN frames.

The LiteX CanReceiver module contains two 11 bit CSRStorage fields, can_id and id_mask,

shown in Listing 14. These fields can be set from the CPU via the CSR bus and allow

software to set the filter ID and mask. For every incoming CAN frame, the ID in the received

frame is compared to the can_id value, and as long as all bits match where the respective

id_mask bit is 1, the id_match flag is driven high. The can_id reset value of 0x123 is used to

match the Embedded Systems module coursework, and the id_mask reset value of 0x7FF

means only CAN frames with an ID of 0x123 will be acknowledged and stored by the

module.

self.can_id = CSRStorage(size = 11, reset = 0x123
self.id_mask = CSRStorage(size = 11, reset = 0x7FF)

Listing 14: CanReceiver CSRStorage fields

An internal counter that is incremented at 48MHz keeps track of the current bit time,

where each CAN bit is expected to last for 384 cycles at 48MHz. Bits are sampled and added

to the internal shift register on the rising edge of the system clock at 75% of the bit time,

when the internal counter is at 287. The internal counter is reset to 0 when the current

value is 383 or when a recessive to dominant (1 to 0) transition is detected on the CAN bus,

maintaining synchronisation with the CAN bus and other devices.

A counter is used to keep track of the number of consecutive bits of the same polarity,

being reset to 0 if the previous and current bit differ or if the counter has reached 4

indicating 5 consecutive bits of the same polarity. When the counter has reached 4, the next

bit is not shifted into the internal shift register as it is a stuffed bit as discussed in the CAN

Bus section.

A CAN Frame has been correctly received when the masked received ID and can_id match,

the data length code is 8 and the required bits for ID extension, remote request and

reserved bits are all 0. These conditions are AND’d together to produce a msg_valid flag.

file:///C:/Users/suple/Desktop/fyp-writeup/rtl/can.sv

40

When the msg_valid flag is active, the received frame ID and data are stored in internal

registers that are connected to CSRStatus fields, allowing the CPU to read the received

frame ID and data. This flag also results in the ACK bit being sent, by driving the TX signal

low to the dominant state for one bit time.

When the msg_valid flag is active, an output pin connected to an EventSourcePulse object

is driven high for 1 cycle at 48MHz. This event source is connected to an EventManager

which is connected to the CPU interrupt bus, creating a hardware interrupt that can be

handled in an Interrupt Service Routine to copy the CAN frame ID and data into CPU

memory. This interrupt logic is created in the canReceiver.py module, and an excerpt of

the code showing the interrupt logic is in Listing 15. Interrupt handling in LiteX is

discussed in more detail in the interrupts section.

self.submodules.ev = EventManager()
self.ev.frame = EventSourcePulse()
self.ev.finalize()
self.comb += self.ev.frame.trigger.eq(self.rcv_pulse)

Listing 15: canReceiver.py excerpt showing interrupt setup

In the interest of a quicker working proof of concept design, the can module matches values

hard-coded into the ES-CAN library provided in the Embedded Systems module

coursework. The DLC (Data Length Code) of CAN frames is expected to always be 8 bytes,

so the DLC value is not exposed to the CPU and frames with less than 8 bytes are not

acknowledged or stored. The can module can be extended to provide the received DLC

value to the CPU via a CSRStatus field. The can module also does not check the CRC bits of

the received frame, as bit flip errors are highly unlikely due to the short length of the CAN

connection and the use of low-speed CAN. A crc_match signal is currently driven constant

high but provides a location for CRC checking to be implemented in the future.

Helper functions are provided in a can library to allow students to more easily read the

CSRStatus fields from the CPU. The library is discussed in more detail in the software

section. The demo program includes a can_read function which continually reads the latest

received CAN frame ID and data and prints it to the UART console. This function was used

alongside a PicoScope to verify that the CAN frames sent from a StackSynth module are

correctly acknowledged and received from the C++ demo program. This testing is detailed

in the testing section.

4.7 Controlling the design from software

A large factor in the usability of the project deliverables is the ease of use of the specialised

hardware from software, including student-written code running on the embedded CPU.

Libraries containing helper functions are located in the demo folder of the repository and

file:///C:/Users/suple/Desktop/fyp-writeup/modules/canReceiver.py
file:///C:/Users/suple/Desktop/fyp-writeup/demo/

41

provide easier access to the registers needed to access the CAN receiver and wave

generator blocks.

The demo software also includes functions from testing throughout the project, built upon

functions from the auto-generated csr.h header file. These functions are wrapped in

#ifdef blocks so they are only included in the compiled binary when the relevant modules

are instantiated within the gateware. For example, led_cmd() and leds_cmd() set the

colour of the OrangeCrab RGB LED to a user-provided value or specific values in a test

pattern respectively.

The audio helper library contains functions for setting the waveform and target frequency

of a specific oscillator and provides enumeration values matching the available waveforms

and frequencies of notes in a range of octaves which are detected and used in editor

suggestions. The helper function implementations satisfy the logic requirement of the

oscillator index being set before the waveform or target frequency is set, as the write

strobe signal is used as an indicator for the logic to capture the new values. The key C++

function signatures are shown in Listing 16.

void set_wave(uint32_t osc, uint32_t wave);
void set_freq(uint32_t osc, uint32_t freq);
void audio(uint32_t osc, uint32_t wave, uint32_t freq);

Listing 16: audio.h function signatures

The can helper library contains a C++ struct definition for the CAN frame ID and data,

which is used as the return type for the can_read() function and functions for reading and

writing the CAN filter ID and mask. An example implementation of the CAN receiver

interrupt handler and initialisation function is also provided, where the interrupt is reset

and enabled and the received CAN frame is output to the serial console above the current

prompt.

This interrupt handler, explained in further detail in the next section, is implemented for a

software interrupt and is called from a polling interrupt service routine in the demo, as the

PicoRV32 CPU does not support external hardware interrupts. The VexRiscV CPU was not

used for testing the interrupt handler as this requires an interrupt handler to be registered

and the documentation did not cover the software side of using hardware interrupts. The

key C++ struct and function signatures are shown in Listing 17.

struct can_frame {
 uint16_t id;
 uint8_t data[8];
};
uint32_t can_id_read(void);
void can_id_write(uint32_t value);

42

uint32_t can_mask_read(void);
void can_mask_write(uint32_t value);
can_frame can_read(void);
void can_isr(void);
void can_init(void);

Listing 17: can.h function signatures

4.8 Interrupts and Scheduling

In an embedded system, interrupts are a vital part of a scheduling system, allowing for

higher priority tasks to be executed when required. The VexRiscV CPU supports hardware

interrupts from external logic such as the canReceiver module, however documentation

for software to handle these interrupts is limited.

For this section, the PicoRV32 CPU was used as external interrupts do not cause the CPU to

jump to an interrupt handler and interrupts must be manually checked and handled,

allowing for easier implementation of a Proof-of-Concept interrupt handler. The PicoRV32

CPU is not used in the remainder of this project as the performance is lower than the

VexRiscV CPU at 0.516 DMIPS/MHz [41] compared to 1.44 DMIPS/MHz [42] as reported in

the respective documentation.

Interrupts in a LiteX module are created by adding an EventManager which automates

connection to the main interrupt bus and accepts three types of events as inputs. An

EventSourcePulse triggers on a pulse and stays asserted after the trigger is de-asserted.

The event is only cleared when acknowledged by software.

An EventSourceProcess triggers on either a rising or falling edge of a signal and is used to

monitor the status of a signal and generate an interrupt on a change. The event is cleared

when acknowledged by software. Finally, an EventSourceLevel contains the current status

of an event and must be set and cleared by external logic, such as a design that keeps

asserting an interrupt until the interrupt cause is cleared.

The EventManager module has an irq output indicating when an enabled interrupt is

pending, a status CSR indicating the current level of an event source, a pending CSR

indicating which interrupts have been triggered and not yet acknowledged and an enable

CSR indicating which interrupts are active.

Following the addition of an EventManager and EventSourcePulse to the canReceiver

module, an interrupt service routine is used to check for pending interrupts and handle the

respective ISRs for each interrupt. Listing 18 shows the can_init() function provided in

the demo can library, where the can IRQ is enabled, the specific interrupt source is enabled

within the Event Manager, and a debug message is printed to the serial console.

43

void can_init(void) {
 irq_setmask(irq_getmask() | (1 << CAN_INTERRUPT));
 can_ev_enable_frame_write(1);
 printf("CAN INIT\n");
}

Listing 18: can_init() function

Listing 19 shows the can_isr() function provided in the demo can library. The ISR first

clears the pending event in the Event Manager, then reads the last received CAN frame. For

debugging purposes, the CAN frame is printed to the serial console and the prompt and

current input buffer restored. Finally, the CAN frame interrupt is re-enabled in the Event

Manager. The ISR also changes the current LED colour to make it clearer when the ISR has

run. The code to change the LED colour and print to the serial console is not shown in the

listing for brevity.

void can_isr(void) {
 can_ev_pending_frame_write(1);
 // Update LED to make it clear that the ISR has run...
 can_frame frame = can_read();
 // Print CAN frame to serial console...
 // Reprint prompt and current input buffer...
 can_ev_enable_frame_write(1);
}

Listing 19: can_isr() function

Along with the LiteX built-in Timer module, interrupts can be used to create hardware

timers. This is especially beneficial for supporting real-time operating systems such as

FreeRTOS, where timers can be used to create initiation triggers for tasks and interrupts

are used for unpredictable events such as receiving CAN frames as in the Embedded

Systems coursework. This is explained in further detail in the further work section.

4.9 FPGA Utilisation

As this project uses an FPGA, a major limitation on the performance of the design is the

available resources. In the output of the nextpnr placement stage, there is a device

utilisation report which shows the number of each type of logic element and primitive

block used. Table 4 shows the FPGA utilisation report, and an excerpt of the logs containing

the original report is included in Appendix 10.2.

Logic Element Used Total Utilisation %

TRELLIS_IO 74 197 37

44

Logic Element Used Total Utilisation %

DCCA 8 56 14

DP16KD 49 56 87

MULT18X18D 2 28 7

ALU54B 0 14 0

EHXPLLL 2 2 100

EXTREFB 0 1 0

DCUA 0 1 0

PCSCLKDIV 0 2 0

IOLOGIC 49 128 38

SIOLOGIC 0 69 0

GSR 0 1 0

JTAGG 0 1 0

OSCG 0 1 0

SEDGA 0 1 0

DTR 0 1 0

USRMCLK 0 1 0

CLKDIVF 1 4 25

ECLKSYNCB 1 10 10

DLLDELD 0 8 0

DDRDLL 1 4 25

DQSBUFM 2 8 25

TRELLIS_ECLKBUF 3 8 37

ECLKBRIDGECS 1 2 50

DCSC 0 2 0

TRELLIS_FF 7790 24288 32

TRELLIS_COMB 24126 24288 99

TRELLIS_RAMW 95 3036 3

Table 4: FPGA Utilisation Report

Lines of importance from Table x.y include:

• DP16KD: dual-port RAM blocks, used in the CPU and the sample storage of the

LiteScope Analyzer

45

– 49/56 used: the memory of the Analyzer is limited due to this, but the design

is unlikely to require more than are currently used

• MULT18X18D: 18x18 multipliers, used in the CPU and for phase-step calculation in

the cordic block

– 2/28 used: a previous iteration of the cordic block where all phase-steps

were calculated combinatorially in parallel resulted in 65/28 multipliers

• EHXPLLL: Phase-Locked Loop, used for generating the 48MHz and other clock

signals required in the design

– 2/2 used: the design already uses both available PLLs, one for the USB PHY

and one for the remainder of the design, where the DAC clock output was

added

• TRELLIS_FF: DFF (D-type flip-flop) logic elements, used to store signals between

clock cycles

– 7790/24288 used: the design currently uses 32% of the available resource so

there is room for expansion

• TRELLIS_COMB: combinational logic elements, used for all logic in the design

between clocked elements

– 24126/24288 used: determines the amount of logic that can be implemented

in the design, this is the limiting factor to adding more features to the design

The breakdown of TRELLIS_COMB usage is helpful in identifying blocks that could be

optimised, however the version of nextpnr provided as part of Project Trellis does not

include the GUI and the command-line program does not expose per module utilization

reports. As a comparison, the LUT4 utilisation has been used as an approximation of the

logic utilisation of each module, as provided in the synthesis report by Yosys, shown in

Table 5. The table shows that the cordic module is small relative to the PicoRV32 CPU,

however the genWave module uses a large amount of logic and is likely a target for future

optimisation.

Module LUT4 Usage

gsd_orangecrab 15543

picorv32 3027

can 139

dacDriver 62

genWave 8874

saw2sin 61

cordic 1066

Table 5: LUT4 Usage breakdown by submodule

46

For further additions to the design, an increase in unused logic will be required. The

OrangeCrab model could be swapped from the LFE5U-25F model to the LFE5U-85F, which

has 84k LUTs, 3744Kb of embedded RAM and 669Kb of distributed RAM, however this

would lead to increased per-board cost of producing the StackSynth FPGA Extension

boards.

Alternatively, the number of logic elements used in the design could be reduced. One

method would be to reduce the number of available oscillators, reducing the logic and

storage for calculating phase-steps and combining samples, however the logic used to

convert phase to samples is shared between all of the oscillators so the decrease in logic

element usage is likely to be small. Another method would be to replace the VexRiscV and

PicoRV32 CPUs used in this design with a smaller CPU at the expense of performance. The

viability of these options is not known, and is left as future work.

5 Testing and Results

This section discusses the testing of individual blocks within the overall design, and the

tools used to verify correct operation.

5.1 Phase to sine amplitude conversion

One area with a noticeable impact on performance is the phase to sine amplitude

conversion of samples within the cordic and saw2sin SystemVerilog modules, as incorrect

amplitude values can result in audible glitches in the waveform output at the 3.5mm

headphone port. The cordic module was first checked as a standalone module, and then

integrated into the saw2sin module and exhaustively tested at each input value as the

output amplitude only depends on the input phase and waveform selections, with no

internal state between input values.

This testing was automated using cocotb, a Python-based verification framework for

SystemVerilog and VHDL designs, and the repository containing the modules and testbench

is available on GitHub [43]. The Python testbench defines the timing and values of the

inputs and checks the output value against the reference, however simulation is handled by

an external simulator. In this module, only two-state simulation is needed as unknown and

high impedance values are not used so Verilator [44] is used as the simulator, as

simulations are much faster than other simulators while maintaining cycle accuracy. If

exact timing is required, using another simulator may be more appropriate as support for

timing directives is limited in Verilator.

The testbench is a function which loops through the 65536 possible input values, and for

each value sets the input phase i_saw and reads the output amplitude o_sin. The output

47

amplitude is then compared to the expected value e_sin, which is calculated using the

sin() function in Python and the error added to the total recorded error. Any errors above

2 from the expected float value are logged and after the loop completes, the average error

per input is displayed. The Python testbench is shown in Listing 20 and can be run by

cloning or downloading the repository and running make in the root directory.

import statements...

@cocotb.test() # cocotb test decorator
async def test_new_cordic(dut):
 await cocotb.start(Clock(dut.i_clk, 10, units='ps').start())

 # start clock coroutine
 diff = 0 # total error
 for cycle in range(0, 65536): # loop through input values
 dut.i_saw.value = cycle # set the input phase
 await Timer(20, units='ps') # wait so output can settle
 e_sin = 32768 * (sin((cycle * pi) / (2**15)) + 1)

 # calculate expected output
 error = float(dut.o_sin.value) - e_sin # calculate error
 if abs(error) > 2: # log any errors above 2
 dut._log.info() # error message...
 diff += abs(error) # add error to the total

 dut._log.info("Testbench finished, average error %f" % (diff / 65536))

Listing 20: Python cocotb testbench for saw2sin module

Using the testbench in Listing 20, the accuracy of the saw2sin module was improved by

adjusting the bit offsets of the amplitude output for the four quadrants of the sine wave

output. The final accuracy achieved was an average error of 0.455326 per input value

meaning the integer output of the saw2sin value is within 1 of the expected value on

average. Listing 21 shows an excerpt of the saw2sin SystemVerilog module where the

offsets can be adjusted for each of the four quadrants of the sine wave.

// Signals for `reverse` and `invert` indicate the quadrant of the sine wave

logic [16:0] sin;
always_ff @(posedge i_clk) sin <= reverse
 ? (invert ? ~{1'b1, qsin[15:0]} // Reverse, Invert: 270-360°
 : {1'b1, qsin[15:0]} + 17'd1) // Reverse, Normal: 90-180°
 : (invert ? ~{1'b1, qsin[15:0]} + 17'd2 // Normal, Invert: 180-270°
 : {1'b1, qsin[15:0]} + 17'd0); // Normal, Normal: 0-90°

48

always_comb o_sin = sin[16:1]; // Remove extra bit used for offsets

Listing 21: SystemVerilog saw2sin module, excerpt of adjusting amplitude offsets

5.2 CORDIC propagation delay

In the implementation of the genWave SystemVerilog module, the cordic module is used to

convert a phase value to a sine amplitude, however when viewing the output of the

PCM1780 using a PicoScope, visible glitches were observed in the waveform output. A

screenshot of the PicoScope software is shown in Figure 13, where the glitch in the output

can be seen, and Figure 14, where a mask is used to show glitches from multiple captures at

once. The glitches primarily occur near when the wave changes sign, or when the MSB of

the amplitude changes. The expected cause of this glitch was propagation delay differences

between the bits of the amplitude output. To mitigate this, the combinatorial output of the

cordic module was replaced with a synchronous output by changing the always_comb

statement to an always_ff @(posedge i_clk). This change removed the glitches from the

waveform output, as shown in Figure 15.

Figure 13: PicoScope screenshot of glitch in waveform output

49

Figure 14: PicoScope screenshot of masked glitches in waveform output

Figure 15: PicoScope screenshot of waveform output without glitches

As the cordic module was no longer combinatorial, the genWave module would need to

sample or capture the output once it is stable. The propagation delay of the cordic module

was measured by using a counter to iterate through all 65536 input values, incrementing

every 8 cycles, and then connecting the i_saw and o_sin signals to the LiteScope Analyzer,

checking the time taken for the output to stabilise. The cocotb testbench is available in the

project files at modules/testPropagation.py, and resulting waveform VCD file at

notes/testPropTiming.vcd.

A screenshot of the VCD file in GTKWave is included in Figure 16. The propagation delay of

the cordic module was measured to be 1-2 cycles at 48MHz, so the output is sampled after

3 cycles to ensure the output is stable. An excerpt of the genWave module showing the value

capture after 3 cycles is shown in Listing 22.

https://github.com/supleed2/EIE4-FYP/blob/main/modules/testPropagation.py
https://github.com/supleed2/EIE4-FYP/blob/main/notes/testPropTiming.vcd

50

Figure 16: GTKWave screenshot of cordic propagation delay

// Saw amplitude captured on cycle 0
always_ff @(posedge i_clk48) if (clk_div[1:0] == 2'd0) saw <= phase[clk_div[7

:2]];

// Waveform selection
always_comb // Select waveform sample based on wav_sel for current oscillator
 case (wav_sel[clk_div[7:2]])
 8'd0: sample = saw;
 8'd1: sample = square;
 8'd2: sample = triangle;
 8'd3: sample = sine;
 default: sample = saw;
 endcase

// Sample captured on cycle 3
always_ff @(posedge i_clk48) if ((clk_div[1:0] == 2'd3) && osc_valid)
 samples[clk_div[7:2]] <= sample;

// Remaining module code...

Listing 22: SystemVerilog genWave module, excerpt of capturing cordic output

5.3 Receiving and acknowledging CAN frames

Operation of the CAN receiver module was verified by connecting the StackSynth FPGA

Extension board to the main StackSynth module and sending CAN frames. A PicoScope [45]

was connected to the CANL pin of the StackSynth inter-board connector using probe A

(blue) and GPIO 11 of the OrangeCrab using probe B (red). The PicoScope serial decoder

was set up to decode the CAN bus signal and display the received CAN frames, including

whether the communication is valid or invalid.

Figure 17 shows a screenshot of the PicoScope software, where GPIO 11 of the OrangeCrab

was driven by the stuff_bit signal of the CAN receiver module and this signal matches the

stuff bits indicated by the PicoScope Serial Decoder. In the figure, two CAN frames are

correctly acknowledged, with both having an ID of 0x123 and data bytes of

0x5206010000000000 and 0x5206030000000000. In the Embedded Systems module, these

51

correspond to note-down events for octave 6 note 1 or C and octave 6 note 3 or D

respectively.

Figure 17: Screenshot of PicoScope using CAN serial decoder on the blue probe

5.4 Software-interrupt detection of CAN frames

Interrupts from the CAN receiver module to the CPU were verified using the PicoRV32 CPU

as this CPU does not jump to an interrupt handler when an external interrupt is received.

This is helpful for testing as the documentation of the LiteX project on registering an

interrupt handler is incomplete, stopping after the Event Manager is connected to the CPU

interrupt port. To demonstrate that the interrupts reach the CPU, are correctly identified

and handled, the demo program includes an interrupt service routine that runs in a polling

manner in the main loop before the serial console input handler runs. This interrupt

service routine checks if any interrupts are pending and which, calling the respective

interrupt handler.

The CAN interrupt handler, discussed in the interrupts section, is called when the CAN

frame received interrupt is detected, and reads the latest received CAN frame values. The

CAN frame ID and data is then printed above the current serial console input line, an

excerpt from the LiteX Terminal is shown in Listing 23. Along with printing the CAN frame

values, the interrupt handler also updates the current OrangeCrab RGB LED colour. This

test of functionality is a demonstration and does not have quantitative results to explain.

CAN frame 12 received, ID: 0x123, data 0x52 0x06 0x01 0x00 0x00 0x00 0x00

0x00

StackSynth> input restored here

Listing 23: CAN interrupt handler printing received CAN frame

5.5 Integration with StackSynth board

Finally, the StackSynth FPGA Extension board was tested with the StackSynth module to

verify that the CAN bus communication and sample generation works, including multiple

keys at once. In order to test multiple key audio output, the can_listen() command was

52

added to the demo program. Appendix 10.3 shows the can_listen() function, which is

called when the can_listen command is entered into the LiteX Terminal.

This function keeps track of which notes are currently active and which oscillators are

being used for those notes, updating the active notes and oscillator frequencies as note

down and note up events are received over the CAN bus. It does not use the interrupt

handler as it is a demo of audio production however the logic could be separated into tasks

as part of future work to shift to a real-time operating system such as FreeRTOS, however

the helper functions in the audio and can libraries are used to simplify the code.

C++ standard library data structures such as a set or vector are more appropriate for such a

function however the libraries failed to link when testing with the GCC compiler provided

by the litex_setup.py script. Another version of GCC may allow standard library

structures and headers to be used. Listing 24 shows the output from GCC when attempting

to compile a program with #include <vector>.

/usr/riscv64-linux-gnu/include/gnu/stubs.h:8:11:
fatal error: gnu/stubs-ilp32.h: No such file or directory
 8 | # include <gnu/stubs-ilp32.h>

Listing 24: GCC error when including vector header

And finally, a measure of the performance improvement in audio quality between the

StackSynth and FPGA Extension boards is the SNR (Signal-to-Noise Ratio) of the audio

output as a higher SNR would result in a lower noise floor and clearer audio for the same

signal amplitude. Table 6 contains the frequency, SNR and THD results for the StackSynth

board and the FPGA Extension board when using a target frequency of 3520Hz (A7), each

using 500 samples in the measurement. The screenshots of the PicoScope measurements

are included in Appendix 10.4.

The results show a small but measurable improvement in SND as well as THD, while the

frequency is slightly further from the target on the FPGA. Overall the audio performance of

a single oscillator is similar, however the FPGA accelerator is capable of many more

oscillators simultaneously.

Board Frequency (Hz) SNR (dBc) THD (%)

StackSynth 3520.29 24.48 2.71

FPGA Extension 3520.60 25.18 2.12

Table 6: SNR and THD measurements of StackSynth and FPGA Extension boards

53

6 Evaluation

The main difficulty in this project came from the lack of documentation of specific features

or modules provided by the LiteX framework, as the overall flow of building gateware and

software is largely automated, however extending the default gateware with custom

modules that connect to existing designs requires precise Python structures to be built in

order to synthesize to the expected design. The SoC and modules developed in this project

can be built upon and can act as a form of documentation of the less documented features

of LiteX, such as the interconnection of modules and process of building custom software to

run on the embedded CPU.

The SoC and software developed in this project allow a student to compile gateware for the

OrangeCrab FPGA, write software to decode CAN frames and control the 64 available

oscillators. This can be used as an extension to the current 3rd Year Embedded Systems

coursework to allow for many more frequencies to be generated at once, including more

complex effects such as chords from a single note press on the StackSynth module. While

this project aims to be a direct extension of the existing coursework, students planning to

use the OrangeCrab FPGA will need to install the LiteX framework as the upload of user

software requires the LiteX Terminal, even if the gateware does not need to be compiled or

re-flashed to the OrangeCrab FPGA.

Writing user software for the SoC also requires the LiteX framework to be installed, as the

version of GCC that is included provides many header files that are required for the

compilation of the software and the LiteX setup script automates the installation of the

required version of GCC for the RISC-V CPUs used in the SoC. Other header files such as the

auto-generated csr.h definitions file can be reused from this project if the gateware is not

changed, and the provided helper function libraries build upon the defined macros and

functions in the csr.h file.

Of the goals identified in the Requirements Capture section, the ability to receive CAN

frames via the inter-board connector and drive multiple oscillators simultaneously from

user software have been met as 64 oscillators are available. The ease of use of the custom

modules is not quantitatively measurable, however the style of functions in the audio and

can C++ headers aim to match the style of functions in the ES_CAN header file provided in

the current Embedded Systems coursework.

The primary goal identified that has not been met in this project is the implementation of

filter modules that would allow more complex sound effects to be created such as

equalisation filters or distortion effects. The filter modules were omitted as the completion

of the core modules and overall Proof-of-Concept design took longer than expected due to

the experimentation needed in the early stages of the project to understand the LiteX

54

framework. However, were a filter module to be implemented, it could be easily inserted

in-between the sample generation module and the Asynchronous FIFO, including multiple

filter blocks in series to create a pipeline of filters that affect the incoming samples

sequentially. Such an implementation would scale linearly in resources as the number of

filter stages is increased, however the filter logic could also be reused for multiple sample

calculations to allow the number of filter stages to scale more efficiently at the cost of code

complexity and timing requirements.

The current design is very high in resource utilisation when synthesised using Yosys, as

discussed in the FPGA Utilisation section, and optimisations have been made to allow the

design to fit within the Lattice LFE5U-25F such as shared use of modules and logic,

however features such as filters and effects on a stream of samples will require extra logic

either requiring further optimisation or an FPGA with more resources.

7 Conclusions and Further Work

This report presented the available resources and implementation of an FPGA Accelerator

for the StackSynth module, allowing for many more oscillators than is possible solely in the

CPU of the Nucleo L432KC microcontroller. The shared use of computational logic reduces

the resource requirements of the design and allows for the use of the OrangeCrab FPGA

which is small enough to fit next to the main StackSynth module. Careful timing analysis of

high-speed signals using LiteScope Analyzer along with the PicoScope for longer-duration

signals contributed to the protocol compatible function of the canReceiver and dacDriver

modules.

The main benefit of the work completed in this project is the ability to extend the current

design with new modules while supporting software control of these new modules, as

much of the benefit of LiteX comes from the automatic generation of pre-processor

definitions and functions to ease communication with and control of external modules.

While working on the implementation of this project, possible avenues for further work

were identified, specifically greater precision in target frequencies and the addition of

software support for hardware interrupts to the embedded CPU.

The wave generation block currently accepts integer format values for the target frequency

of each oscillator; however, this restricts the precision of the selectable frequencies,

especially at lower frequencies where the changes in calculated phase step are greater. The

phase step calculation can be adjusted to support a fixed-point format where the input

target frequency value is a power of two multiple (x2^n) of the desired target frequency,

and then the phase step is shifted right to compensate for the scaling. A version of the

genWave module using a 24.4-bit fixed point format was implemented, however when

55

attempting to compile software for the SoC, any use of floating-point values and operations

caused the compile to fail due to missing library files, so this enhancement has been left as

future work. Preliminary research suggests that the picolibc setting for print and scan

support may remove support for floating point values, as explained in the picolibc GitHub

repository printf documentation [46].

With an event source and event manager, the current implementation of the can module is

correctly connected to the interrupt port of the embedded CPU and generated interrupt

signals when requested from the SystemVerilog module using a pulse, however the demo

software does not currently include the necessary setup to handle hardware interrupts as

supported by the VexRiscV CPU. The addition of hardware interrupts and an interrupt

handler would allow for more flexibility in the user software and may allow for running

FreeRTOS on the OrangeCrab FPGA, bringing the experience of writing software for the SoC

closer to that of the existing StackSynth module. Handling of an interrupt as soon as it

occurs also reduces the chances of a second interrupt occurring before the first handler has

finished running, which could cause the second interrupt to be missed if of the same type

or an urgent task to be delayed.

8 User Guide

This project is easiest to build on a Unix-like system, e.g. Linux or macOS (including WSL2),

but can be built on Windows though instructions may need to be adapted.

8.1 Prerequisites

More information on toolchain setup can be found on the OrangeCrab Getting Started Guide

[47]

• Python 3.6+

• dfu-util (also provides dfu-suffix)

– Can be installed via sudo apt install dfu-util on Ubuntu, more

information on the project website [48]

– LibUSB drivers for Windows, or udev rules for Linux, explained in detail on

the dfu-util project website

• Yosys and nextpnr

– Can be installed separately, following the guide for Project Trellis [12]

– Precompiled versions available as part of the OSS CAD Suite [49]

– Check using yosys -V and nextpnr-ecp5 -V

• LiteX [50]

56

– Follow the installation guide [51] to install the LiteX packages to your

environment

– Meson, Ninja and Sphinx tools using pip3 install meson ninja sphinx

– RISC-V GCC using sudo ./litex_setup.py --gcc riscv which installs gcc-

riscv64-linux-gnu or equivalent

If using WSL2, you will also need to install usbip in the Linux distribution and usbipd-win

[52] on Windows. The wiki is helpful for setting up WSL2 USB pass-through. [53]

8.2 Running the Project

After downloading or cloning the repository, the remaining steps are handled by the

build.sh bash script, but the stages are also explained here in case you want to run them

manually or are using Windows without WSL2. (Optional) steps prompt the user for

confirmation, in case you want to skip them on subsequent runs.

• (Optional) Build the Bitstream file

– Run python3 --build --doc to build the bitstream and documentation of

the SoC

– The built documentation is located in
build/gsd_orangecrab/doc/_build/html/

– Move / rename the bitstream to a more convenient location, mv

build/gsd_orangecrab/gateware/gsd_orangecrab.bit

gsd_orangecrab.dfu

– Apply the DFU suffix to the bitstream, dfu-suffix -v 1209 -p 5af0 -a
gsd_orangecrab.dfu

• (Automatic) Build the demo software, C++

– From the project root, run BUILD_DIR=`realpath -eL
build/gsd_orangecrab/` WITH_CXX=1 make -C demo

– The resulting binary is located at demo/demo.bin

• (Optional) Flash the bitstream to the OrangeCrab

– Run dfu-util -w -D gsd_orangecrab.dfu and press the button on the

OrangeCrab to enter the bootloader, flashing will begin when the bootloader

is detected

• (Optional) Load the demo software over a serial connection using litex_term

– Run litex_term --kernel {path to demo.bin} /dev/ttyACM0, then either

press the button on the OrangeCrab to reboot, or type serialboot or reboot

in the LiteX terminal

– On Windows, the port will be a COM port rather than a TTY, and on Unix

systems, the port may be different

57

9 Bibliography

[1] Electrical Engineering Department, “Embedded Systems Module Page,” [Online].
Available: https://intranet.ee.ic.ac.uk/electricalengineering/eecourses_t4/
course_content.asp?c=ELEC60013&s=D4.

[2] “PlatformIO,” [Online]. Available: https://platformio.org/.

[3] “STM32duino GitHub Organisation,” [Online]. Available:
https://github.com/stm32duino.

[4] “STM32L432KC Microcontroller,” [Online]. Available:
https://www.st.com/en/microcontrollers-microprocessors/stm32l432kc.html.

[5] “STM32L432KC Datasheet,” [Online]. Available:
https://www.st.com/resource/en/datasheet/stm32l432kc.pdf.

[6] “ARM Cortex-M4 DSP Instructions Table,” [Online]. Available:
https://developer.arm.com/documentation/100166/0001/Programmers-
Model/Instruction-set-summary/Table-of-processor-DSP-instructions.

[7] “DS1881 Digital Potentiometer Datasheet,” [Online]. Available:
https://www.analog.com/media/en/technical-documentation/data-
sheets/DS1881.pdf.

[8] “TS482 Stereo Amplifier Datasheet,” [Online]. Available:
https://www.st.com/resource/en/datasheet/ts482.pdf.

[9] “OrangeCrab Homepage,” [Online]. Available: https://orangecrab-
fpga.github.io/orangecrab-hardware/r0.2/.

[10] “Adafruit Feather Specification,” [Online]. Available: https://cdn-
learn.adafruit.com/downloads/pdf/adafruit-feather.pdf.

[11] “OrangeCrab Hardware GitHub Repository,” [Online]. Available:
https://github.com/orangecrab-fpga/orangecrab-hardware.

[12] “Project Trellis GitHub Repository,” [Online]. Available:
https://github.com/YosysHQ/prjtrellis.

[13] “OrangeCrab Examples GitHub Repository,” [Online]. Available:
https://github.com/orangecrab-fpga/orangecrab-examples.

58

[14] “ValentyUSB GitHub Repository,” [Online]. Available: https://github.com/im-
tomu/valentyusb.

[15] “litex-hub/litex-boards GitHub Repository Pull Request #59,” [Online]. Available:
https://github.com/litex-hub/litex-boards/pull/59.

[16] “Migen GitHub Repository,” [Online]. Available: https://github.com/m-labs/migen.

[17] “testPropagation.py on GitHub,” [Online]. Available:
https://github.com/supleed2/EIE4-FYP/blob/main/modules/testPropagation.py.

[18] “PCM1780 Product Page,” [Online]. Available:
https://www.ti.com/product/PCM1780.

[19] “PCM1780 Digital to Analogue Converter Datasheet,” [Online]. Available:
https://www.ti.com/lit/gpn/pcm1780.

[20] “CAN bus WIkipedia Article,” [Online]. Available:
https://en.wikipedia.org/wiki/CAN_bus.

[21] “Bosch CAN Specification 2.0,” [Online]. Available:
http://esd.cs.ucr.edu/webres/can20.pdf.

[22] “Texas Instruments: Introduction to CAN,” [Online]. Available:
https://www.ti.com/lit/an/sloa101b/sloa101b.pdf.

[23] “ATA6561 CAN Transceiver Product Page,” [Online]. Available:
https://www.microchip.com/en-us/product/ATA6561.

[24] “ATA6561 CAN Transceiver Datasheet,” [Online]. Available:
https://ww1.microchip.com/downloads/aemDocuments/
documents/OTH/ProductDocuments/DataSheets/20005991B.pdf.

[25] “svlint GitHub Repository,” [Online]. Available: https://github.com/dalance/svlint.

[26] “Vidual Studio Code editor homepage,” [Online]. Available:
https://code.visualstudio.com/.

[27] “svls-vscode GitHub Repository,” [Online]. Available:
https://github.com/dalance/svls-vscode.

[28] “svls GitHub Repository,” [Online]. Available: https://github.com/dalance/svls.

[29] “slang GitHub Repository,” [Online]. Available:
https://github.com/MikePopoloski/slang.

59

[30] “slang Online Compiler,” [Online]. Available: https://sv-lang.com/explore/.

[31] “Final Year Project GitHub Repository,” [Online]. Available:
https://github.com/supleed2/EIE4-FYP.

[32] “litex-boards GitHub Repository,” [Online]. Available: https://github.com/litex-
hub/litex-boards/.

[33] “Final Year Project Demo Program,” [Online]. Available: C:\Users\suple\Desktop\fyp-
writeup\demo\main.cpp.

[34] “LiteX GenerateWave module,” [Online]. Available: C:\Users\suple\Desktop\fyp-
writeup\modules\genWave.py.

[35] “ZipCPU Blog Post: Building a Numerically Controlled Oscillator,” [Online]. Available:
https://zipcpu.com/dsp/2017/12/09/nco.html.

[36] “Microchip: Numerically Controlled Oscillator (NCO),” [Online]. Available:
https://www.microchip.com/en-us/products/microcontrollers-and-
microprocessors/8-bit-mcus/core-independent-and-analog-peripherals/-
control/numerically-controlled-oscillator.

[37] “Desmos Graphing Calculator,” [Online]. Available:
https://www.desmos.com/calculator.

[38] “ZipCPU: Using a CORDIC to calculate sines and cosines in an FPGA,” [Online].
Available: https://zipcpu.com/dsp/2017/08/30/cordic.html.

[39] “ZipCPU: Crossing clock domains with an Asynchronous FIFO,” [Online]. Available:
https://zipcpu.com/blog/2018/07/06/afifo.html.

[40] “Migen AsyncFIFO module,” [Online]. Available: https://github.com/m-
labs/migen/blob/master/migen/genlib/fifo.py#L177.

[41] “PicoRV32 GitHub Repository,” [Online]. Available:
https://github.com/YosysHQ/picorv32.

[42] “VexRiscV GitHub Repository,” [Online]. Available:
https://github.com/SpinalHDL/VexRiscv.

[43] “cordic Module and Testbench GitHub Repository,” [Online]. Available:
https://github.com/supleed2/cordic.

[44] “Verilator GitHub Repository,” [Online]. Available:
https://github.com/verilator/verilator/.

60

[45] “PicoScope Product Page,” [Online]. Available:
https://www.picotech.com/products/oscilloscope.

[46] “picolibc printf documentation,” [Online]. Available:
https://github.com/picolibc/picolibc/blob/main/doc/printf.md.

[47] “OrangeCrab Getting Started Guide,” [Online]. Available: https://orangecrab-
fpga.github.io/orangecrab-hardware/r0.2/docs/getting-started/.

[48] “dfu-util Project Homepage,” [Online]. Available: https://dfu-util.sourceforge.net/.

[49] “OSS CAD Suite GitHub Repository,” [Online]. Available:
https://github.com/YosysHQ/oss-cad-suite-build.

[50] “LiteX GitHub Repository,” [Online]. Available: https://github.com/enjoy-digital/litex.

[51] “LiteX Installation Guide,” [Online]. Available: https://github.com/enjoy-
digital/litex/wiki/Installation.

[52] “usbipd-win GitHub Repository,” [Online]. Available:
https://github.com/dorssel/usbipd-win.

[53] “usbipd-win Wiki: WSL Support,” [Online]. Available:
https://github.com/dorssel/usbipd-win/wiki/WSL-support.

61

10 Appendix

10.1 PCM1780 Audio Data Input Formats

62

10.2 Raw nextpnr Utilisation output
Info: Device utilisation:
Info: TRELLIS_IO: 74/ 197 37%
Info: DCCA: 8/ 56 14%
Info: DP16KD: 49/ 56 87%
Info: MULT18X18D: 2/ 28 7%
Info: ALU54B: 0/ 14 0%
Info: EHXPLLL: 2/ 2 100%
Info: EXTREFB: 0/ 1 0%
Info: DCUA: 0/ 1 0%
Info: PCSCLKDIV: 0/ 2 0%
Info: IOLOGIC: 49/ 128 38%
Info: SIOLOGIC: 0/ 69 0%
Info: GSR: 0/ 1 0%
Info: JTAGG: 0/ 1 0%
Info: OSCG: 0/ 1 0%
Info: SEDGA: 0/ 1 0%
Info: DTR: 0/ 1 0%
Info: USRMCLK: 0/ 1 0%
Info: CLKDIVF: 1/ 4 25%
Info: ECLKSYNCB: 1/ 10 10%
Info: DLLDELD: 0/ 8 0%
Info: DDRDLL: 1/ 4 25%
Info: DQSBUFM: 2/ 8 25%
Info: TRELLIS_ECLKBUF: 3/ 8 37%
Info: ECLKBRIDGECS: 1/ 2 50%
Info: DCSC: 0/ 2 0%
Info: TRELLIS_FF: 7790/24288 32%
Info: TRELLIS_COMB: 24126/24288 99%
Info: TRELLIS_RAMW: 95/ 3036 3%

10.3 can_listen() C++ function

const uint32_t freqs[85] = {/* integer frequencies for */};
static void can_listen_cmd() {
 for (int i = 0; i < 64; i++) { // Set all oscillators to sine wave
 set_wave(i, WAVE_SINE); }
 bool active_notes[85] = {0};
 uint32_t active_osc[64] = {0};
 uint32_t active_oscs = 0;
 while (true) {
 can_frame frame = can_read(); // Read CAN frame
 switch (frame.data[0]) {

63

 case 'P': { // Note down event
 uint32_t note = (frame.data[1] - 1) * 12 + frame.data[2];
 if (active_notes[note] || active_oscs == 64) // ignore
 active_notes[note] = true; // Mark note as active
 active_osc[active_oscs] = note; // Set oscillator to note
 set_freq(active_oscs, freqs[note]); // Set oscillator frequency
 active_oscs++;
 break;
 }
 case 'R': { // Note up event
 uint32_t note = (frame.data[1] - 1) * 12 + frame.data[2];
 if (active_notes[note] == false) { // Not active, ignore
 break;
 } else if (true) {
 active_notes[note] = false; // Mark note as inactive
 active_oscs--;
 if (note == active_osc[active_oscs]) { // Note is last active
 active_osc[active_oscs] = 0; // Clear oscillator
 set_freq(active_oscs, 0); // Set frequency to 0
 break;
 } // Note is not last active
 for (uint32_t i = 0; i <= active_oscs; i++) { // Find note
 if (note != active_osc[i]) {
 continue; } // Note found
 uint32_t swapped_note = active_osc[active_oscs]; // Get last note
 set_freq(i, freqs[swapped_note]); // Set frequency to last active
 active_osc[i] = swapped_note; // Set oscillator to last active
 set_freq(active_oscs, 0); // Set last oscillator to 0
 active_osc[active_oscs] = 0; // Clear last active note
 goto done; // Done (break only exits for loop)
 }
 break;
 }
 }
 default: { // Ignore other frames
 break;
 }
 }
 done:
 if (readchar_nonblock()) { // Check for input and exit
 getchar();
 for (int i = 0; i < 64; i++) { // Reset all oscillators
 audio(i, WAVE_SAWTOOTH, 0);
 }
 return;
 }
 }
}

64

10.4 PicoScope SNR and THD Measurement screenshots

10.4.1 StackSynth Module Performance

10.4.2 OrangeCrab Module Performance

